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New Gravitational Memories

I Agenda

• SMS Outline

• Interlude A) Asymptotic observers

• Round 1: E&M

• Interlude B) Asymptotic symmetries

• Round 2: Standard Memory

• Round 3: Spin Memory

The goal of this talk is to describe the intuition that led to the ‘spin memory e↵ect.’ It will

serve as a primer to the upcoming P.S.Z. paper, as well as (hopefully) give some appreciation

for what Andy and friends have been doing this past year.

II SMS Outline

Soft Factors

Memories Symmetries

i) E&M Weinberg O( 1
ω
)

ii) grav. Weinberg O( 1
ω
)

iii) C.S. O(1)

i) Liénard-Wiechert

ii) C.K.

iii) P.S.Z.

Global

i) e-charge

ii) pµ

iii) Jµν

Asymptotic

large gauge transformations

supertranslations

superrotations

Mark
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III Interlude A) Asymptotic observers

• conventions

• connection between position space (large r) and momentum space (small !)

The conformal compactification of Minkowski space gives a nice way to visualize the causal

structure. The diagram is drawn so that the left side vs. right side are the NP and SP of a

full S2. The retarded and advanced times

u = t� r, v = t+ r (III.1)

give the metric

ds

2 = �dt

2 + dr

2 + r

2
d⌦2 = �dudv +

(v � u)2

4
d⌦2

. (III.2)

Now letting

u = L tanU, v = L tanV (III.3)

gives

ds

2 =
L

2

cos2 U cos2 V
(�dUdV +

sin2(U � V )

4
d⌦2) (III.4)

where U, V 2 {�⇡

2 ,
⇡

2}.
Massless particles come in along past null infinity I� and exit at future null infinity I+.

In this compactification, spatial infinity i

0 is a single point. This is one way of motivating

why

III.I Conventions

I will parameterize coordinates on the sphere with

z = e

i� tan
✓

2
, d⌦2 = 2�

zz̄

dzdz̄, �

zz̄

=
2

(1 + zz̄)2
(III.5)

I will be considering on-shell particles, whose momenta are described by their energy and a

point on the sphere

p

µ = E(1, x̂) massless

p

µ = m�(1, �x̂) massive
(III.6)
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Large r observer

Large u fall-offs of Nzz

i-

i0

i+

When one looks at the mode expansion for a massless field, for example the gauge field

A
µ

(x) = e

X

↵=±

Z
d

3
q

(2⇡)3
1

2!
q

["↵⇤
µ

a

↵

(~q)eiq·x + h.c.] (III.7)

one notices from the phase

e

iq·x = e

�i!u�i!r(1�x̂·q̂) (III.8)

that taking the large r limit will pick out q̂ = x̂. This stationary phase approximation relates

the low frequency momentum space behavior to the large distance position space behavior

at the same point on a sphere.

This position-to-momentum space interpretation becomes manifest in soft factors. When

you have a set of in and out particles in on-shell momentum eigenstates, the amplitude for

an n particle scattering configuration is related to an n+ 1 soft gauge field

hout|a
↵

(q)S|ini = (S(0)↵ + S

(1)↵ + ...)hout|S|ini (III.9)

where the first term is O( 1
!

) and the subleading terms go down in powers of !. Normally

these soft factors are derived by taking Feynman diagrams and allowing the additional low
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momentum photon to attach to all external legs. Vertex factors from the interactions deter-

mine the numerator, while the additional propagator gives the pole for the leading term.

These can equivalently be thought of as classical equations of motion, connecting soft

factors to memories.

IV Round 1: E&M

• radiation zone

• soft factor and expectation values

• intuition for boundary matching

A natural question to ask is how the I+ description carries over to large-but-finite r observers.

While on the Penrose diagram such an observer looks like it skirts I+, it is on a timelike,

rather than a null, trajectory. The answer is in the order of limits. By imposing fall o↵

conditions on the dynamical variables, one can focus on dynamics where u << r.

The simplest example is to consider the radiation sourced by an accelerated charge in

electromagnetism. The equation governing such radiation

@

u

A

u

= @

u

(Dz̄

A

z̄

+D

z

A

z

) + e

2
j

u

(IV.1)

when integrated over time is a statement about the final versus initial charge-velocity dis-

tributions. With the identification

�A

z

= � 1

4⇡
"̂

⇤+
z

!S

(0)+ (IV.2)

coming from the mode expansion, saying that the soft factor gives the expectation value of

�A

z

means that the radial component of the electric field has the following contribution

from a single boosted charge:

lim
!!0

![Dz

"̂

⇤+
z

S

(0)+
p

+D

z̄

"̂

⇤�
z̄

S

(0)�
p

] = Q

�

2
1

(1�~

�·n̂)2 (IV.3)

where

S

(0)±
p

= Q

p · "±
p · q (IV.4)

Note that simply plugging in the soft factor gives the electric field for a perpetually moving

particle. In terms of the position of the source at the retarded time, the Liénard-Weichert
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potential gives

E

r

=
q

4⇡

1

�

2(1� ~

� · n̂)2|r � r

s

|2 (IV.5)

which is in exact agreement with plugging massive p

µ into the soft factor. This also yields

two important insights. 1. We can equivalently write an expression for the electric field of a

perpetually moving charge as a function of its current position. In this case

~

E =
q

4⇡

1

�

2(1� �

2 sin2
✓)

3
2

R̂

R

2
(IV.6)

If the charge moves through the spacetime origin, towards the north pole for instance, then

a little bit after t = 0, it will be closer to the NP, whereas a little bit before, it will be closer

to the SP. The radial electric field thus obeys a natural “antipodal” matching of sorts. The

issue of matching across i0 is non-trivial, but one would hope that in the finite r limit, one

can still make sense of this type of matching, so an argument like this is helpful. 2. We can

think of these zero-mode position space measurements as telling us something about what

dynamics had to happen (i.e. radiation) given what came out versus what went in, when

considered as two separate static configurations.

Massless scattering a la LSET. Fields localized to shell emerging from spacetime origin

along u = 0. Start in vacuum, massless charges pass, vector potential changes as a result.

Between step functions, looks like “pure gauge” on the sphere. Large gauge transformations

e↵ectively allow you to “reset” your gauge field between any two wave fronts.

V Interlude B) Asymptotic symmetries

• Bondi Gauge

• supertranslation and superrotation vector fields

• G

uu

and G

uz

constraint equations

Asymptotically flat metrics in Bondi Gauge have the form

ds

2 = �du

2 � 2dudr + 2r2�
zz̄

dzdz̄ + 2mB
r

du

2

+
�
rC

zz

dz

2 +D

z

C

zz

dudz + 1
r

(43Nz

� 1
4@z(Czz

C

zz))dudz + c.c.

�
+ ...

(V.1)

Key things to note about this gauge is that g

rr

= g

ra

= 0. C

zz

is a complex degree of
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freedom. The G

uu

and G

ua

O(r�2) constraint equations

G

µ⌫

= 8⇡GT

M

µ⌫

(V.2)

relate these to the Bondi mass and angular momentum aspect. From G

uu

@

u

m

B

= 1
4 [D

2
z

N

zz +D

2
z̄

N

z̄z̄]� T

uu

,

T

uu

⌘ 1
4Nzz

N

zz + 4⇡G lim
r!1

[r2TM

uu

],
(V.3)

Taking @

z̄

of the G

uz

constraint and @

z

of the complex conjugate G

uz̄

constraint gives:

@

z

@

z̄

m

B

= Re[@
u

@

z̄

N

z

+ @

z̄

T

uz

] (V.4)

Im[@
z̄

D

3
z

C

zz] = 2Im[@
u

@

z̄

N

z

+ @

z̄

T

uz

]. (V.5)

There are two families of vector fields which preserve the asymptotic form of the metric:

supertranslations parameterized by an arbitrary scalar on the sphere and superrotations

corresponding to a Virasoro symmetry parametrized by a conformal killing vector.

⇠

+ =(1 +
u

2r
)Y +z

@

z

� u

2r
D

z̄

D

z

Y

+z

@

z̄

� 1

2
(u+ r)D

z

Y

+z

@

r

+
u

2
D

z

Y

+z

@

u

+ c.c. (V.6)

+ f

+
@

u

� 1

r

(Dz

f

+
@

z

+D

z̄

f

+
@

z̄

) +D

z

D

z

f

+
@

r

,

(Note that in the limit that one is near the u = 0 lightcone, the lorentz transformations look

like global conformal transformations of the sphere).

There are two limits in which solving the radiation constraint equations simplifies. 1)

Assume only outgoing radiation sourced by changes in the distribution of massive matter.

Then at linear order, the change on the left hand side gives the metric perturbations on the

right. 2) Assume only massless in and out states, then use boundary conditions to fix the

early and late time limits of the left hand side. This sets the stage for the scattering problem

and S-matrix connection.

These symmetries are turned into ward identities for massless scattering processes as

follows:

• set boundary conditions and matching between I� and I+.

• the Lie derivative gives the action of the symmetry on the hard particles

• limits to zero mode radiative brackets (special to d=4) motivate the conjugate zero-
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mode operator

• the lie derivative acting on the flat metric gives the inhomogeneous change generated

in the linear theory

– �

Y

C

zz

= �uD

3
z

Y

z+...! Q

+
S

= �1
2

R
dud

2
zD

3
z

Y

z

u@

u

C

z

z̄

– �

f

C

zz

= �2D2
z

f+....! soft graviton current involving
R
du@

u

C

zz

verifying that the charges generated the symmetry via the soft factor amounted to showing

that the soft operator gave the appropriate Lie derivative acting on the hard states. (For

the super translation case, the charge reduced to an expression like the Bondi Mass aspect

in the first constraint equation.)

One important boundary condition worth mentioning here is that the curl of C
zz

vanishes

at the limits of I+. This makes it possible for its integral to be finite, which we will see

relates to the spin memory e↵ect.

VI Round 2: Standard Memory

• soft factor and boosted mass

• Supertranslation charge �(!) and 1
!

zero modes

• intepreting the metric

The boundary conditions on the metric imply that at early and late u

C

zz

= �2D2
z

C (VI.1)

much like in the electromagnetic case, this looks like a pure supertranslation, though it really

indicates a transition between two di↵erent super translated vacuua.

Start in vacuum, shockwave passes, metric changes as a result but is still in an asymptoti-

cally flat form. Between wavefronts, looks like nothing is happening. BMS supertranslations

e↵ectively allow you to “reset” your metric between any two shock waves.

Here the conjugate zero modes are a shift and a step, with the step describing the

Weinberg pole and its conjugacy to the pure supertranslation shift defining the S matrix

ward identity. Comparing the metric at early and late times, one sees that a change in C

zz

amounts to a change in physical distances between objects at di↵erent points on a large r

sphere.
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S.Z. show that the leading soft factor amounts to the Braginsky Thorne result with the

expectation value position-to-momentum-space interpretation. Like the E&M case, on can

read o↵ from the constraint equation �m

B

cooresponding to a set of boosted masses, which

individually have the form

m

B

=
m

�

3

1

(1� ~

� · n̂)3 (VI.2)

The massive soft factor contribution from a single particle

S

(0)±
p

=
(p · "±)2
p · q (VI.3)

obeys

lim
!!0

![Dz

D

z

"̂

⇤+
zz

S

(0)+
p

+D

z̄

D

z̄

"̂

⇤�
z̄z̄

S

(0)�
p

] = �m

�

3
1

(1�~

�·n̂)3 (VI.4)

where n̂ is the unit vector pointing parallel to ~q and I have used

p

µ = m�(1, ~�). (VI.5)

The constraint equation gives:

@

u

m

B

=
1

4
D

2
z

N

zz +
1

4
D

2
z̄

N

z̄z̄ � 1

2
T

M

uu

� 1

4
N

zz

N

zz

, (VI.6)

so that a linearized theory with no massless matter would have

�m

B

=
1

4
[D2

z

�C

zz +D

2
z̄

�C

z̄z̄]. (VI.7)

From the stationary phase approximation, we identify �C

zz

as

�C

zz

= �

2

8⇡
"̂

⇤+
zz

!S

(0)+
p

(VI.8)

reproducing the above.

VII Round 3: Spin Memory

• interpreting the metric

• thought experiment: the BMS ring

• rotation of inertial observers and D

A

C

AB

dx

B

Mark

Mark
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• Superrotation charge

K.L.P.S. showed that the superrotations corresponded to the subleading soft factor, which

essentially came from the soft charge Q

+
S

= �1
2

R
dud

2
zD

3
z

Y

z

u@

u

C

z

z̄

picking out the order 1

soft factor due to the projection lim
!!0

(1 + !@

!

) coming from the u integral.

This got me thinking about how to naturally construct a u integrated observable. The

result was the following thought experiment. Imagine sending light rays around a ring

fixed to the BMS observer’s coordinates. The path that a beam will travel between two

nearby mirrors along this forced trajectory will be described by ds

2 = 0. If one looks at the

asymptotically flat metric in Bondi gauge, one will note that there are various places where

lengths will change, but there is one set of terms, namely the dudz and c.c. part that are

odd under �z ! ��z. If you have two beams going between the same mirrors in opposite

directions at the same time, then this would pick out that correction to the metric.

Now let us consider a small ring. If the metric does not change appreciably over the time

scale during which a beam circuits the ring, then over the course of one orbit, each segment

is e↵ectively transversed by two beams moving in opposite directions at e↵ectively “same

time” as regards the metric fluctuations. (Note that I can always scale the size of the ring

down so that this limit holds). Going in one direction is slightly faster than the other and

this curl part accumulates so that over the course of one orbit, I get a contour integral and

time delay

�P =

I

C
(Dz

C

zz

dz +D

z̄

C

z̄z̄

dz̄) . (VII.1)

Now if I repeat the orbit again, the time delay accumulates. In the limit where the repetition

is much faster than the time delay, the net time accumulated delay is simply the time integral

of the curl of the metric divided by the period of the beam orbit:

�+
u =

1

2⇡L

Z
du

I

C
(Dz

C

zz

dz +D

z̄

C

z̄z̄

dz̄) . (VII.2)

This has multiple nice features, the most important of which is that it is insensitive to

supertranslations, or even superrotations for that matter. The final state of the metric will

be such that this curl is zero, and this the cumulative time delay will converge rather than

continue to build in a vacuum-equivalent configuration. It is analogous to a frame dragging

phenomenon, but is a zero-mode e↵ect and thus a new “gravitational memory.”

Using the constraint equations, one can rewrite this time delay in terms of the angular

Mark

Mark

Mark

Mark

Mark

Mark

Mark

Mark

Mark
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Figure 1: Two counter propagating relays of signals are triggered sequentially around the
circular array of detectors, with the final de-sychronization recorded.

momentum aspect and stress tensor:

�+
u = � 1

⇡

2
L

Im

Z

DC

d

2
w�

ww̄

Z
d

2
z@

z̄

G(z;w)

�+

N

z

+

Z
duT

uz

�
(VII.3)

where G(z;w) = log(sin2 ✓

2). using Andy’s boundary matching idea relating antipodal gener-

ators on I� to I+, one can consider massless scattering configurations which start and end

in vacuum and match

@[zNz̄]|I�
+
= @[zNz̄]|I+

�
(VII.4)

antipodally across i0. One then gets

�⌧ ⌘ �+
u���

v = � 1

⇡

2
L

Im

Z

DC

d

2
w�

ww̄

Z
d

2
z@

z̄

G(z;w)
Z

duT

uz

�
Z

dvT

vz

�
(VII.5)

which in terms of the soft factor

1

2
( lim
!!0+

+ lim
!!0�

)A
n+1 (p1, ...pn; (!q, "µ⌫)) = S

(1)
µ⌫

"

µ⌫A
n

(p1, ...pn) , (VII.6)

where

S

(1)
µ⌫

=
i

2

nX

k=1

p

k(µJk⌫)�q
�

q · p
k

(VII.7)
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can be explicitly checked to match for a set of massless scatters. i.e.

Im
⇥ Z

duD

2
z

C

z̄z̄

�
Z

dvD

2
z

C

z̄z̄

⇤
= 2iG[D2

z̄

Ŝ

(1)
zz

�D

2
z

Ŝ

(1)
z̄z̄

]. (VII.8)

This boundary matching can be equivalently expressed as a new charge

Q(z, z̄) = i@[z̄Nz](z, z̄)|I+
�

(VII.9)

constraining angular momentum flux through antipodal contours in a scattering process.

As a final note, there is another way to interpret this spin memory in terms of inertial

observers. A massive geodesic at large r has a four velocity given by (suppressing the Bondi

mass term)

v

µ = (1, 0,� 1

2r2
D

z

C

zz

,� 1

2r2
D

z̄

C

z̄z̄) (VII.10)

The component of the velocity tangental to the two sphere is thus determined by the form

V ⌘ 1
4D

a

C

ab

dx

b. If one considers a rigid ring, it can resist deformations but will have no

means of resisting a net rotation. Thinking of the curl as the vorticity of a fluid, this time

integral is equivalent to a net rotation.

Depending on the relative scaling of the rotation with the size of the contour, it becomes

more appropriate or less to treat the ring as a BMS vs. geodesic observer. I.e. for spinning

particles passing through a ring the e↵ect scales down rapidly with distance, such that the

ring can be “held still,” whereas gravitational wave scaling is such that the local region

rotates together. While the first gyraton-like solution would expect a time delay, the second

would be better described by a net rotation relative to objects far away.

VIII Main Topics

• part that is measureable & part that is a symmetry

– � at boundaries $ supertranslations and an overall shift

– curl of vector
R
du of subleading behavior $ divergence of this vector field’s

subleading behavior and superrotations

• u << r conformal symmetry of the lightcone

– I+ vs stationary observer t ⇠ r + "

– order of limits and u fall-o↵ conditions
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• between shocks, looks like pure gauge

– massless scattering, LSET and the solution propagating out at u = 0

• match what happened on I� to beginning of what happens on I+.

– accelerations occurring at t = 0 don’t propagate until u = 0 to I+.

– look at boosted solutions on straight line trajectories through the spacetime origin.

– antipodal matching of electric charge radial field

• 2 zero modes, Weinberg pole conjugate to �(!) piece.
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Sabrina Gonzalez Pasterski
(Dated: Dec 16, 2014)

This note proposes a detector arrangement/measurement corresponding to the subleading soft

graviton theorem.

a

I. STARTING ASSUMPTIONS

The metric conditions considered in S.&Z.1 were:

mb = Mi = constant, Czz = 0
mb = Mf = constant, Czz 6= 0.

(I.1)

Here, I will consider a particular scattering configuration
where instead Czz = 0 both initially and finally. More-
over, I will restrict myself to situations where the enve-
lope of Czz(u) has a finite u integral at each point on the
sphere. Under these conditions:R

duu@uCzz = uCzz|1�1 �
R
duCzz

= �
R
duCzz

(I.2)

where the boundary term can be dropped for quick
enough Czz(u) fall-o↵s, which I will assume.

II. TWO DETECTOR PRIMER

Following S.&Z., I will consider detectors that are at
a fixed r = r0, with �z = z

0 � z describing their angular
separation in complex coordinates. If we assume �z is
small, then:

L =
2r0|�z|
1 + zz̄

(II.1)

is their spatial separation using the standard flat metric:

ds

2
F = �du

2 � 2dudr + 2r2�zz̄dzdz̄. (II.2)

When, in addition to the flat metric, there is a perturba-
tion:

ds

2 = ds

2
F + 2mB

r du

2

+rCzzdz
2 +D

z
Czzdudz + c.c.,

(II.3)

the trajectories of light rays traveling between detectors
will satisfy:

2r20�zz̄�z�z̄+r0Czz�z
2+D

z
Czz�zz0

u�z+c.c.�(�zz0
u)2 = 0
(II.4)

going from z ! z

0, whereas the reverse route will have:

2r20�zz̄�z�z̄+r0Czz�z
2�D

z
Czz�z0zu�z+c.c.�(�z0zu)

2 = 0
(II.5)

a ISBN: 978-0-9863685-9-2
1arXiv:1411.5745v1.pdf

where the Bondi mass term is subleading in r0. Subtract-
ing the two equations gives:

�zz0
u� �z0zu = D

z
Czz�z + c.c. (II.6)

While adding the two equations gives:

(�zz0
u)2+(�z0zu)

2 = 4r20�zz̄�z�z̄+r0Czz�z
2+c.c. (II.7)

Combing these yields:

�zz0
u = L̃+

1

2
[Dz

Czz�z + c.c.] (II.8)

�z0zu = L̃� 1

2
[Dz

Czz�z + c.c.] (II.9)

where

L̃ = L+
r0

2L
[Czz�z

2 + c.c.] (II.10)

III. SUBLEADING MEASUREMENT

Consider N detectors arranged in a regular polygon
around z=0.

zn = ✏e

i 2⇡n
N

, n 2 {0, ..., N � 1} (III.1)

In the large N limit, one has:

z = ✏e

i�
, �z = iz�� (III.2)

The di↵erence between a clockwise versus a counter
clockwise circuit for a constant Czz is:

lim
N!1

N�1P
n=0

{�n,n+1u� �n+1,nu}

= lim
N!1

N�1P
n=0

D

z
Czz(✏e

i 2⇡n
N )i✏ei

2⇡n
N

2⇡
N + c.c.

=
2⇡R
0
D

z
Czz(z)iz��+ c.c.

=
H
✏ D

z
Czzdz + c.c.

(III.3)

This is equivalent to sending the signal chains in opposite
directions around the array of detectors and looking at
the time di↵erence when the two pulses arrive at the
starting point after a single loop.
Note that this is a cumulative e↵ect. The di↵erence in

timing is a correction to the net time for a single circuit,
which is at leading order in r0 is:

L✏ = 4⇡r0✏. (III.4)
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FIG. 1. Two counter propagating relays of signals are trig-

gered sequentially around the circular array of detectors, with

the final de-sychronization recorded.

The subleading correction, which does not change the
relative time delay of the counter rotating signals, is due
to the di↵erence between the loop integrals of L and L̃.

Consider a Czz(u) which varies slowly enough that
summing the accumulated time delay for intervals spaced
by �u = 4⇡r0✏ approximates the u integral:

P
m

H
✏ D

z
Czz(u = 4⇡r0✏m)dz + c.c.

= 1
4⇡r0✏

R
du

H
✏ D

z
Czzdz + c.c.

(III.5)

Under the assumption that the u integral is finite, the
final time delay between two initially synched counter
rotating signal chains thus corresponds to u, z integral.

IV. SOFT FACTOR INTERPRETATION

The net de-synchronization is related to the subleading
soft graviton factor. For a stationary metric satisfying
the the vacuum Einstein equations, it would be the time
integral of the curl of the twist, which would be zero. In
a scattering process with gravitational radiation, how-
ever, one can use the expectation value interpretation
to think of

R
duD

2
z̄Czz in terms of the soft factor. In

this case, the real and imaginary parts of the subleading
soft factor correspond to divergence and curl of Da

Cab.
Note that the subleading soft graviton theorem contains
more content than that used for the superrotation charge.
The real part of D2

z̄Czz is what appears in the superro-
tation charge,

R
duD

a
D

b
Cab, while the imaginary part

contributes to i

R
du[D2

z̄Czz � D

2
zCz̄z̄]. This imaginary

part is expected to be finite under the boundary condi-
tions2 D2

zCz̄z̄�D

2
z̄Czz = 0 at I+

+ and I+
� , assuming quick

enough fall o↵s in u for this quantity.
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