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I show how the radiation emitted during the scattering of non-relativistic charged particles corre-
sponds to the O(ω−1) soft factor in QED. Namely, if we think of the photon momentum in the soft
factor as labeling a direction at which a far-field observer sits, the QED matrix element pre-factor
corresponds to the time integral of the radiated electric field measured by that observer when a set
of non-relativistic charged particles scatter and accelerate.

I. CLASSICAL SCATTERING

Consider the mode expansion of Fuz = ∂uAz from
“Low’s Subleading Soft Theorem as a Symmetry of
QED”:

Fuz = −eε̂
+
z̄

8π2

∞∫
0

dω ω[a+(ωx̂)e−iωu + a−(ωx̂)†eiωu]. (I.1)

Its integral over u is given by:∫
du Fuz = −eε̂

+
z̄

8π
lim
ω→0+

ω[a+(ωx̂) + a−(ωx̂)†] (I.2)

so that a soft insertion picks out: ωε̂+z̄ times the Weinberg
soft factor.

Semi-classically, we can think of the mode expansion
of Fuz as the Fourier transform for the corresponding
electric field component. The Weinberg soft theorem thus
corresponds to the time integral of the radiated electric
field measured at any far-field point labelled by (z, z̄).
Such a non-zero time-integrated value would be expected
for a charged particle that accelerates.

Let’s look at some equations from classical electrody-
namics:

~Erad = ~er ×

(
~er ×

∂ ~Arad
∂t

)
(I.3)

where ∂ ~Arad

∂t becomes the u derivative of the gauge field
component tangent to the two sphere at the far-field
point, just as Fuz is the u derivative of Az. For a non-
relativistic accelerating particle:

~Erad =
Q

4πε0rc2
~er × (~er × ~a) (I.4)

so that the time integral of ~Erad is proportional to the
change in velocity of the particle. For instance, in the
non-relativistic regime where the same particles come in
and out, but with different velocities:∫

dt ~Erad =
∑

in−out

Qk
4πε0rc2

~er × (~er × ~vk). (I.5)

II. CONNECTION TO QED SOFT FACTOR

For a far-field point labeled by (z, z̄), we have:

~er =

(
z + z̄

1 + zz̄
,
i(z̄ − z)
1 + zz̄

,
1− zz̄
1 + zz̄

)
(II.1)

while a particle traveling with four momentum:

pk = |pk|

(√
1 +

m2
k

|pk|2
,
zk + z̄k
1 + zkz̄k

,
i(z̄k − zk)

1 + zkz̄k
,

1− zkz̄k
1 + zkz̄k

)
(II.2)

has, at leading order in the non-relativistic limit:

~vk =
|pk|
mk

(
zk + z̄k
1 + zkz̄k

,
i(z̄k − zk)

1 + zkz̄k
,

1− zkz̄k
1 + zkz̄k

)
. (II.3)

We then find that∑
in−out

{
Qk

r ~er × (~er × ~vk)|
}
· ∂z~x

=
∑

in−out
−2Qk|pk|

mkr
(z̄k−z̄)(1+zk z̄)

(1+zz̄)2(1+zk z̄k)

(II.4)

where ~x = r~er.
Meanwhile, in the low-particle-momentum limit∑
in−out

ωε̂+z̄
pk · ε+

pk · q
=

∑
in−out

−2
Qk|pk|
mkr

(z̄k − z̄)(1 + zkz̄)

(1 + zz̄)2(1 + zkz̄k)
(II.5)

for photon momentum and polarization four vectors
given by:

q = ω
(

1, z+z̄1+zz̄ ,
i(z̄−z)
1+zz̄ ,

1−zz̄
1+zz̄

)
ε+ = 1√

2
(z̄, 1,−i,−z̄).

(II.6)

Similarly,∑
in−out

{
Qk
r
~er × (~er × ~vk)

}
· ∂z̄~x =

∑
in−out

ωε̂+z̄
pk · ε−

pk · q
. (II.7)

where ε−µ = ε+∗µ in Minkowski coordinates.
We thus see that the Weinberg soft factor appearing

in the mode expansion of Fuz in the ω → 0 limit cor-
responds to the total time integral of the electric field
radiating towards (z, z̄) coming from the acceleration of
massive charged particles when their velocities change in
a scattering process.
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