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A	Triangle	of	Relations
• Over	the	past	few	years	Strominger and	collaborators	have	been	studying	how	asymptotic	

symmetry	groups	manifest	themselves	in	scattering	matrix	elements	via	soft	factors	

• soft	factors	⇒Ward	identities	implying	constraints	on	the	" -matrix	

which	correspond	to	a	larger	class of	symmetry	transformations

• What	resulted	is	a	pattern	of	connections	between	traits	of	low	energy	radiation	that	

appeared	with	multiple	iterations:		this	turns	into	a	fill	in	the	blank	exercise	once	one	vertex	of	

a	new	iteration	is	motivated
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In	this	manner	a	brand	new	iteration	was	

completed	(ASG	~ past	decade	vs	50’s-60’s).	

This	iteration	is	related	to	a	generalization	of	

Lorentz	transformations	and	has	motivated	

looking	at	"-matrix	elements	in	a	new	basis	

with	definite	SL(2,C)	weights	
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http://physicsgirl.com/1505.00716v1.pdf


A	Triangle	of	Relations
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i)	Weinberg	– photon	O(	
(
) )	

ii)	Weinberg	– graviton	O(
(
) )	

iii)	Cachazo &	Strominger – graviton	O(1)	

i)	Liénard-Wiechert /	Bieri &	Garfinkle

ii)	Zeldovich &	Polnarev /	Christodoulou	

iii)	Pasterski,	Strominger,	&	Zhiboedov

(global) (asymptotic)	

i)	e-charge	 large	U(1)	

ii)	#$ supertranslations

iii)	*+, superrotations

Goal	for	this	talk:		
1)	explain	the	vertices	of	this	soft	
triangle	to	demonstrate	the	most	

recent	spin-related	iteration

2) how	this	motivates	a change	of	

basis	(current	work	with	S.H.	Shao	

and	A.	Strominger)

SGP@MIT
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"-matrix		Constraints	from	Symmetries
• Noether’s Theorem:		Continuous	Symmetries	⇒	 Conservation	Laws
•More	Symmetries	⇒	More	Constraints	on	"-matrix	

•Modus	Operandi:		

Ø Look	for	larger	set	of	“physical”	symmetries	

ØMotivate	via	properties	of	low	energy	scattering	
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"-matrix		Constraints	from	Symmetries
Where	do	these	“extra”	symmetries	come	from?

• Boundary	conditions	can’t	be	too	restrictive	so	as	to	disallow	typical	scattering	

processes,	larger	class	of	boundary	conditions	gives	a	larger	group	of	symmetries	

that	preserve	this	class	of	boundary	conditions

Ø These	are	our	extra	symmetries
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Class	of	gauge	transformations	

that	act	non-trivially	on	the	

boundary	data	which	is	larger	

than	the	standard	global	U(1)	of	

E&M	or	#$ and	%$&	of	Minkowski

space
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To	see	where	this	non-trivial	action	on	

the	boundary	data	comes	from,	let	us	

consider	scattering	from	a	spacetime

perspective	where	the	in	and	out	states	

come	from	and	exit	the	past	and	future	

boundaries	of	our	spacetime

Scattering	from	a	Spacetime Perspective	

02/22/17 6
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Scattering	from	a	Spacetime Perspective	
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U(1)	Example
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constant	time	slices

./
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21

|Ψ〉

• With	this	in	mind	we	can	understand	the	

U(1)	iteration	of	the	triangle	

• Gauss’s	law	is	a	constraint	equation	relating	

electric	flux	to	charges	

9											

:
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U(1)	Example
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Ψ ;<

Ψ =>?

Push	slice	to	null	infinity	&	constraint	

equations	can	be	used	to	relate	radiation	to	

change	in	charge	velocities
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U(1)	Example
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• Look	at	radial	fall	offs	and	isolate	the	free	

data	corresponding	to	radiative	modes

• Find	the	ASG	that	preserve	these	fall-offs

SGP@MIT



U(1)	Example
Some	more	details:

•Radial	Expansion:

•ASG	that	preserves	this	expansion:

•Mode	Expansion:

•Constraint	Equation:
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U(1)	Example
Two	key	points:

•Saddle	point	at	large	A	picks	out	a	gauge	boson	momentum	pointing	in	the	same	direction	as	

where	an	observer	near	null	infinity	would	detect	it.		As	a	result,	one	ends	up	with	a	mode	

expansion	where	the	angular	integral	localizes,	and	(J, L) remain	as	Fourier	conjugates.	

• ∫ OJ	picks	out	L → 0.		As	such	we	can	relate	the	soft	factors	to	the	constraint	equations:		
Fourier	transform	of	a	pole	

(
)	 is	a	step	function
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[arXiv:1407.3789,	arXiv:1505.00716 ]
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Some	Conventions:

U(1)	Example
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Integrate	the	constraint	equation	along	J

The	soft	factor	indicates	that	typical	scattering

processes	will	produce	a	nonzero	J integrated

electric	field.	
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U(1)	Example
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•Upshot:		The	residue	of	the	Weinberg	pole	indicates	a	nonzero	value	for	certain	

low-energy	radiation	observables	aka	“memory	effects”

•Since	setting	these	modes	to	zero	would	trivialize	the	allowed	scattering	events,	we	

get	with	this	class	of	boundary	conditions	a	larger	class	of	gauge	transformations	

that	preserve	the	radial	order	of	the	falloffs	while	shifting	the	boundary	values	aka

“large	gauge	transformations”	(see	Strominger [arXiv:1308.0589 arXiv:1312.2229] for how soft	theorems	can	be	

used	to	construct	Ward	identities	for	these	asymptotic	symmetries)

J

symmetry

memory

RS
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Midpoint	Recap
• From	the	U(1)	example	we’ve	seen	how	from	soft	theorems	we	can	extract	low	energy	

radiation	observables	(memory	effects),	which	are	non-zero	in	typical	scattering	processes	and	

thus	obtain	a	larger	asymptotic	symmetry	group	for	less	stringent	boundary	conditions

• For	the	gravity	case,	we	can	write	down	a	metric	expansion,	holding	on	to	the	notion	of	null	

infinity	for	spacetimes that	are	only	asymptotically	flat,	look	at	the	vector	fields	for	

diffeomorphisms	which	preserve	these	falloffs	
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Both	the	subleading soft	factor	and	the	ASG	it	

corresponds	to	will	motivate	looking	at	" -

matrix	elements	in	a	new	basis	with	definite	

SL(2,C)	weights,	while	the	memory	effect	

helps	motivate	this	extended-BMS	symmetry	

as	“physical.”

SGP@MIT



Asymptotically	Flat	Spacetimes
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OT5 = −O@5 + OX5 + OY5 + OZ5

BMS	1960’s

Want	to	consider	non-trivial		

gravitational	backgrounds	that	

are	“close”	to	being	flat

Ø Approach	flat	spacetime

far	away	from	sources

SGP@MIT



Asymptotically	Flat	Spacetimes
Some	more	details:
•Radial	Expansion:

•ASG	that	preserves	this	expansion:

•Mode	Expansion:								[SS radiative	data

•Constraint	Equations:			
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Coordinate	Conventions:
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Asymptotically	Flat	Spacetimes
The	physical	observable	modes	conjugate	to	the	

ASG	transformations	are	gravitational	

displacement	and	spin	memory	effects	
([arXiv:1502.06120],	potentially	observable	[arXiv:1702.03300])
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Asymptotically	Flat	Spacetimes
Their	values	can	be	extracted	from	the	leading	as	

well	as	a	more	recent	subleading ([arXiv:1404.4091])
soft	graviton	theorems.
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hzn+1, zn+2, ...|a�(q)S|z1, z2, ...i =
⇣
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⌘
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Asymptotically	Flat	Spacetimes
• Let	us	take	a	closer	look	at	the	superrotation vector	field	near	null	infinity:

• Notice	with	two	copies	of	Witt	algebra	since	\ is	any	2D	CKV

• Also,	J]> prefers	Rindler energy	eigenstates

• Rather	than	using	the	subleading soft	factor	to	establish	a	Ward	identity	for	this	asymptotic	

symmetry	([arXiv:1406.3312])	one can massage it to	look like 2D	stress	tensor	

([arXiv:1609.00282])
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Weight	Conventions:
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Final	Recap
• We	see	that	a	triangle	of	connections	between	soft	theorems,	memory	effects,	and	asymptotic	

symmetry	groups	has	led	to	an	iteration	involving	an	extension	of	the	SL(2,C)	Lorentz	

transformations	to	arbitrary	2D	CKVs.

• Moreover	the	preferred	basis	for	the	action	of	this	symmetry	on	"-matrix	elements	is	one	with	

definite	SL(2,C)	weights	rather	than	the	standard	plane	wave	basis.
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Is	a	highest-weight	basis	a	natural	choice	for	studying	
implications	of	superrotations?

Ø Recast	flat	space	amplitudes	in	this	form	and	see	

what	features	arise…

SGP@MIT
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Massive	Scalars
• Consider	the	celestial	sphere	[45 as	the	boundary	of	the	lightcone from	the	origin	in	Minkowski

spacetime.		The	projective	coordinate	^ undergoes	mobius transformations	when	the	

spacetime undergoes	Lorentz	transformations	
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w =
X1 + iX2

X0 +X3
w ! aw + b

cw + d
•We	look	for	solutions	to	the	massive	Klein-Gordon	equation	

parameterized	by	a	weight	Δ and	a	reference	direction	^ such	

that	it	transforms	as	a	quasi-primary	under	SL(2,C)
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Massive	Scalars
• If	we	looked	at	single	hyperbolic	slice	of	constant	unit	distance	from	the	origin	in	a(,b described	
by	coordinates:	
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ds2H3
=
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◆

•We	can	construct	a	bulk	to	boundary	propagator	that	

transforms	covariantly under	SL(2,C)	

G�(y, z, z̄;w, w̄) =
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y

y2 + |z � w|2
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G�(y
0, z0, z̄0;w0, w̄0) = |cw + d|2�G�(y, z, z̄;w, w̄)
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Massive	Scalars
• If	we	think	of	(Y, Z) as	coordinates	in	momentum	space,	we	can	use	this	bulk-to-boundary	

propagator	to	construct	the	desired	solutions:	
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•Moreover,	we	can	apply	this	transform	directly	to	the	

amplitude	to	convert	"-matrix	elements	to	a	highest	weight	

basis:

#
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Massive	Scalars
•If	we	look	at	the	Klein-Gordon	inner	product	for	two	such	states	with	distinct	reference	vectors

we	get	an	integral	that	we	can	make	sense	of	in	a	distributional	manner	if	we	take	Δc = d + .ef

02/22/17 25

(�+
1 ,�

+
2 ) = �i

Z
d3 ~X

h
�+
�1,m

(Xµ;w1, w̄1)@X0�+⇤
�2,m

(Xµ;w2, w̄2)� @X0�+
�1,m

(Xµ;w1, w̄1)�
+⇤
�2,m

(Xµ;w2, w̄2)
i

= 2(2⇡)3m�2

Z 1

0

dy

y3

Z
dzdz̄G�1(y, z, z̄;w1, w̄1)G

⇤
�2

(y, z, z̄;w2, w̄2)

(�+
1 ,�

+
2 ) = 64⇡5m�2 1

(�1 +�⇤
2 � 2) |w1 � w2|�1+�⇤

2
�(�1 + �2)

SGP@MIT

[arXiv:1701.00049]



Massive	Scalars
•The	way	in	which	2D	conformal	symmetry	dictates	

the	form	of	correlation	functions	is	seen	here	as	

Lorentz	invariance	where	the	physical	spacetime is	

what	is	typically	the	abstract	embedding	space

•Other	efforts	towards	a	flat	space	holographic	
description	[hep-th/0303006,arXiv:1609.00732]	
have	looked	at	a	foliation	of	Minkowski space	to	

reproduce	AdS/CFT,	dS/CFT	on	each	slice	or	

convolving	m=0	highest	weight	states	in	ex.	only	the	

forward	lightcone region	to	reproduce	CFT-like	

correlators.
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Massive	Scalars
•Here,	the	bulk	to	boundary	propagator	acts	on	the	amplitude	in	momentum	space.		As	such	it	

probes	the	amplitude	at	all	energy	scales	(vs	only	needing	to	know	matrix	elements	between	

low	energy	states	in	an	effective	theory)

•The	behavior	of	low-point	“correlation	functions”	is	strongly	dictated	by	momentum	

conservation	in	the	bulk.		Special	scattering	configurations	can	be	used	to	get	Witten	diagram-

like	results.		
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m=0,	MHV
•By	holding	L ≡ h

5i fixed	as	we	take	j to	zero,	we	can	see	how	the	massless	limit	of	our	

transform	can	be	deduced	from	the	boundary	behavior	of	our	momentum	space	bulk-to-

boundary	propagator:

•This	motivates	defining	massless	highest	weight	states	in	terms	of	a	frequency	mellin transform,	

which	obey	an	orthogonality	condition	for	Δ = 1 + .e (unitary	principal	series	representation)
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m=0,	MHV
•It	is	curious	how	this	particular	choice	of	weights	produces	integrals	over	all	energies	that	are	
well	defined	for	the	tree	level	MHV	amplitudes	(at	least	in	a	distributional	sense):
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m=0,	MHV
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•The	low	point	amplitudes	are	essentially	fixed	by	the	4D	kinematics.		The	MHV	4pt	is	the	first	

where	non-contact	configurations	are	allowed,	although	a	cross	ratio	constraint	remains	from	

the	manner	in	which	four	null	momenta	summing	to	zero	are	not	linearly	independent.		For	a	

2 → 2 process	with	helicities	(− −	+	+)
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m=0,	MHV
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•Although	3	pt massless	scattering	restricts	the	momenta	to	be	collinear,	one	can	go	to	(2,2)	

signature	where	the	Z are	real	variables

•And	then	use	BCFW,	combined	with	mellin and	inverse	mellin transforms	to	check	consistency	of	

the	4	pt result.	
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m=0,	MHV	– How	far	can	we	take	this?

02/22/17 SGP@MIT 32

•Curious	thoughts:		Is	there	sense	in	which	we	could	rephrase	recursion	relations	for	4D	massless	

scattering	amplitudes,	like	BCFW,	in	terms	of	2D	OPE	statements?

•Not	there	yet,	ex.	singular	behavior	for	low	point	functions	would	seem	prohibitive	to	such	an	

interpretation,	but	have	option	combining	a	shadow,	smeared	solution:

still	use	MHV	mellin amplitudes	as	building	blocks
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Flat	space	amplitudes	
in	a	highest-weight	basis:	
A	natural	choice	for	studying	implications	of	superrotations?
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