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Abstract

The four-dimensional (4D) Lorentz group SL(2,C) acts as the two-dimensional (2D)

global conformal group on the celestial sphere at infinity where asymptotic 4D scat-

tering states are specified. Consequent similarities of 4D flat space amplitudes and 2D

correlators on the conformal sphere are obscured by the fact that the former are usually

expressed in terms of asymptotic wavefunctions which transform simply under space-

time translations rather than the Lorentz SL(2,C). In this paper we construct on-shell

massive scalar wavefunctions in 4D Minkowski space that transform as SL(2,C) con-

formal primaries. Scattering amplitudes of these wavefunctions are SL(2,C) covariant

by construction. For certain mass relations, we show explicitly that their three-point

amplitude reduces to the known unique form of a 2D CFT primary three-point func-

tion and compute the coefficient. The computation proceeds naturally via Witten-like

diagrams on a hyperbolic slicing of Minkowski space and has a holographic flavor.

ar
X

iv
:s

ub
m

it/
17

65
74

4 
 [

he
p-

th
] 

 3
1 

D
ec

 2
01

6



Contents

1 Introduction 1

2 Conformal Primary Wavefunctions 3

2.1 Integral Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Analytic Continuation and the Massless Wavefunction . . . . . . . . . . . . . 6

3 Massive Three-Point Amplitude 7

A Klein-Gordon Inner Product 10

1 Introduction

Quantum field theory (QFT) scattering amplitudes in four-dimensional (4D) Minkowski

space are typically expressed in terms of asymptotic plane wave solutions to the free wave

equation. Translation invariance is manifest because the plane waves simply acquire phases

which cancel due to momentum conservation. The SL(2,C) Lorentz invariance is more

subtle as plane waves transform non-trivially into one another. In this paper we find a basis

of SL(2,C) primary solutions to the massive scalar wave equation and recast certain 4D

scattering amplitudes in a manifestly SL(2,C) covariant form. This form is very familiar from

the the study of two-dimensional (2D) conformal field theory (CFT), in which SL(2,C) acts

as the global conformal group. The appearance of the 2D conformal group is no coincidence,

since the Lorentz group acts as the global conformal group on the celestial sphere, denoted

by CS2, at null infinity where the asymptotic states are specified.

Studies of the SL(2,C) properties of scattering amplitudes date back to Dirac [1], but a

new reason has arisen for interest in the topic. When gravity is coupled, it was conjectured

in [2–5] that the SL(2,C) is enhanced to the full infinite-dimensional local conformal (or

Virasoro) group. This conjecture was recently proven [6–8] to follow at tree level1 from the

new subleading soft graviton theorem of [15].2 While the full Virasoro appears only when

gravity is coupled, the scattering amplitudes of any QFT that can be coupled to gravity are

1The subleading soft theorem has a one-loop exact anomaly [9–12] whose effects remain to be understood

but are recently discussed in [13,14].
2One may hope that ultimately 4D quantum gravity scattering amplitudes are found to have a dual

holographic representation as some exotic 2D CFT on CS2, but at present there are no proposals for such a

construction.

1



constrained to be ‘Virasoro-ready’.3 This suggests that they should resemble a subset of 2D

CFT correlators, likely involving complex and continuous conformal dimensions. Indeed it

has already been observed [16,17] that soft photon amplitudes take the form of a 2D current

algebra. Here we seek to understand the 2D description of 4D scattering amplitudes away

from the soft limit.

This paper considers massive scalar three-point functions, and recasts them in the stan-

dard form of 2D CFT correlators on the celestial sphere CS2. To summarize the result, let

Xµ (µ = 0, 1, 2, 3) be the flat coordinates on Minkowski space. A natural coordinate on CS2

where XµXµ = 0 is

w =
X1 + iX2

X0 +X3
. (1.1)

Lorentz transformations act as the global conformal group on CS2

w → aw + b

cw + d
. (1.2)

Here the complex parameters a, b, c, d obey ad−bc = 1. We will construct a three-parameter

family of solutions labelled by a point w on CS2 and an SL(2,C) weight ∆ (rather than

the three components of spatial momenta ~p which label plane waves) which transform as

conformal primaries. We will find below they are naturally displayed in a hyperbolic slicing

of Minkowski space, in harmony with the form of flat space holography advocated in [2].

SL(2,C) then implies that the 4D tree amplitude takes the form

Ã(wi, w̄i) =
C

|w1 − w2|∆1+∆2−∆3|w2 − w3|∆2+∆3−∆1|w3 − w1|∆3+∆1−∆2
, (1.3)

where the ‘OPE coefficients’ C depends on the masses, conformal weights, and cubic coupling

of the three asymptotic scalars. An integral formula for C involving Witten-like diagrams

on the hyperbolic slices is derived. In general this integral may not be computable in closed

form, but it simplifies in the near-extremal case when the incoming particle is only slightly

heavier than the sum of the outgoing particles and is explicitly given below.

Other tractable examples would be of great interest. In particular, the beautiful struc-

ture of N = 4 amplitudes suggest they may take a particularly nice 2D form rewritten as

correlators on CS2. In [8] one contribution to such amplitudes (from the interior of the

forward lightcone) was expressed as a Witten diagram, but to obtain the full amplitude

additional harder-to-compute contributions (from outside the lightcone) must be added in.

This remains an outstanding open problem.

3This generalizes the well known constraint that any QFT that can be coupled to gravity must have a

local conserved stress tensor.
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The utility of hyperbolic slicing was already noticed in a context with some similarity to

the present one by Ashtekar and Romano in [18]. de Boer and Solodukhin initiated a program

to understand flat space holography in terms of AdS holography via hyperbolic slicing in [2].

Soft theorems and aspects of scattering were hyberbolically studied in [8, 19–21]. In the

context of the recent revival of the conformal bootstrap program, the linear realization

of the conformal symmetry in the embedding Minkowski space has been used to simplify

computations of, for example, conformal blocks and propagators in AdS [22–26].

The outline of the paper is as follows. In Section 2 we define and construct the massive and

massless scalar wavefunctions that are conformal primaries of the Lorentz group SL(2,C).

Our construction, equation (2.10) below, is a convolution of plane waves with the bulk-to-

boundary propagator on the hyperbolic sliceH3, and is evaluated in terms of Bessel functions.

We also present an integral transform that takes a massive scalar scattering amplitude into an

SL(2,C) covariant correlation function. In Section 3 we compute the three-point amplitude

of massive conformal primary wavefunctions in the near-extremal limit. The main result

is equation (3.13). In Appendix A we compute the Klein-Gordon inner product of these

primary wavefunctions for a fixed mass.

2 Conformal Primary Wavefunctions

In this section we construct scalar wavefunctions that are conformal primaries of the Lorentz

group SL(2,C). A scalar conformal primary wavefunction φ∆,m(Xµ;w, w̄) of mass m and

conformal dimension ∆ is defined by the following two properties:

1. It is a solution to the Klein-Gordon equation of mass m,4(
∂

∂Xν

∂

∂Xν

−m2

)
φ∆,m(Xµ;w, w̄) = 0 . (2.1)

2. It transforms covariantly as a conformal (quasi-)primary operator in two dimensions

under an SL(2,C) Lorentz transformation,

φ∆,m

(
Λµ

νX
ν ;
aw + b

cw + d
,
āw̄ + b̄

c̄w̄ + d̄

)
= |cw + d|2∆φ∆,m (Xµ;w, w̄) , (2.2)

where a, b, c, d ∈ C with ad− bc = 1 and Λµ
ν is its associated SL(2,C) group element

in the four-dimensional representation.5

Note that, in contrast to the situation in AdS/CFT, the mass m and the conformal dimension

∆ are not related.
4We will use the (−,+,+,+) convention for the signature in R1,3.
5There is no canonical way to embed the celestial sphere into the lightcone in Minkowski space. It follows
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2.1 Integral Representation

Conformal primary wavefunctions for a massive scalar field can be constructed from the

Fourier transform of the bulk-to-boundary propagator in three-dimensional hyperbolic space

H3. Let (y, z, z̄) be the Poincaré coordinates of the H3 with metric,

ds2
H3

=
dy2 + dzdz̄

y2
. (2.3)

Here 0 < y < ∞ and y = 0 is the boundary of the H3. This geometry has an SL(2,C)

isometry that acts as

z → z′ =
(az + b)(c̄z̄ + d̄) + ac̄y2

|cz + d|2 + |c|2y2
,

z̄ → z̄′ =
(āz̄ + b̄)(cz + d) + ācy2

|cz + d|2 + |c|2y2
,

y → y′ =
y

|cz + d|2 + |c|2y2
, (2.4)

with a, b, c, d ∈ C and ad − bc = 1. The H3 can be embedded into R1,3 as either one of the

two branches (p̂0 > 0 or p̂0 < 0) of the unit hyperboloid

−(p̂0)2 + (p̂1)2 + (p̂2)2 + (p̂3)2 = −1 . (2.5)

More explicitly, we can choose this embedding map p̂µ : H3→ R1,3 for the upper hyperboloid,

corresponding to an outgoing particle, to be

p̂µ(y, z, z̄) =

(
1 + y2 + |z|2

2y
,
Re(z)

y
,
Im(z)

y
,
1− y2 − |z|2

2y

)
. (2.6)

This implies the useful relation

z =
p̂1 + ip̂2

p̂0 + p̂3
. (2.7)

Let G∆(y, z, z̄;w, w̄) be the scalar bulk-to-boundary propagator of conformal dimension

∆ in H3 [27],

G∆(y, z, z̄;w, w̄) =

(
y

y2 + |z − w|2

)∆

. (2.8)

that there is also no canonical way to associate a Möbius action on w with an SL(2,C) element Λµν in the

four-dimensional representation. In fact, any two Λµν ’s that differ by an SL(2,C) conjugation are equally

good for our definition. Below we will make a choice of the map Λµν(a, b, c, d) by fixing a reference frame for

p̂µ in (2.6). More explicitly, Λµν is the SL(2,C) transformation matrix acting on p̂µ given by plugging (2.4)

into (2.6).

4



This transforms covariantly under the SL(2,C) transformation (2.4),

G∆(y′, z′, z̄′;w′, w̄′) = |cw + d|2∆G∆(y, z, z̄;w, w̄) , (2.9)

where w′ = (aw + b)/(cw + d) and w̄′ = (āw̄ + b̄)/(c̄w̄ + d̄).

The conformal primary wavefunction for a massive scalar is

φ±∆,m(Xµ;w, w̄) =

∫ ∞
0

dy

y3

∫
dzdz̄ G∆(y, z, z̄;w, w̄) exp

[
±im p̂µ(y, z, z̄)Xµ

]
, (2.10)

where we pick the minus (plus) sign for an incoming (outgoing) particle. In the next subsec-

tion we will see that potentially divergent integrals can be regulated in an SL(2,C) covariant

manner by complexifying the mass m and (2.10) is expressed in terms of Bessel functions.

It is trivial to check that (2.10) is indeed a conformal primary wavefunction. First, it

satisfies the massive Klein-Gordon equation because each plane wave factor eimp̂·X does.

Second, it is a conformal quasi-primary (in the sense of (2.2)) because of the SL(2,C)

covariance (2.9) of the bulk-to-boundary propagator in H3. Our definition and formula for

the conformal primary wavefunction (2.10) can be readily generalized to Minkowski space of

any dimension R1,d+1 and it would transform covariantly under the Euclidean d-dimensional

conformal group SO(1, d+ 1).

The H3 is embedded, via the map (2.6), into the hyperboloid in the momentum space,

rather than position space and the boundary point w, w̄ might seem to live at the boundary

of momentum space rather than Minkowski space. However, these spaces are canonically

identified. The trajectory of a free massive particle is

Xµ(s) = p̂µs+Xµ
0 . (2.11)

At late times, s→∞, −X2 →∞ and

Xµ

√
−X2

→ p̂µ . (2.12)

That is, massive particles asymptote to a fixed position on the hyperbolic slices of Minkowski

determined by their four-momenta. Hence (w, w̄) can be interpreted as a boundary coordi-

nate of the late-time asymptotic H3 slice.

Although we are far from constructing any example of such, the authors of [2] speculate on

a boundary 2D CFT (of some exotic variety) on CS2 a subset of whose correlation functions

are the 4D bulk Minkowski scattering amplitudes. Every bulk field would be dual to a

continuum of operators labelled by their conformal weights. In this putative 2D CFT,

the scalar bulk field mode (2.10) would be holographically dual to a local scalar boundary

operator O∆(w, w̄) of dimension ∆.
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The SL(2,C) covariance of the conformal primary wavefunction implies the SL(2,C)

covariance of any scattering amplitudes constructed from them. Let pµj be the on-shell

momenta of n massive scalars of masses mj (j = 1, · · · , n). Given any Lorentz invariant

n-point momentum-space scattering amplitude A(pµj ) of these massive scalars (including the

momentum conservation delta function δ(4)(
∑n

j=1 p
µ
j )), the conformal primary amplitudes

Ã∆1,··· ,∆n(wi, w̄i) are

Ã∆1,··· ,∆n(wi, w̄i) ≡
n∏
i=1

∫ ∞
0

dyi
y3
i

∫
dzidz̄iG∆i

(yi, zi, z̄i;wi, w̄i)A(mj p̂
µ
j ) , (2.13)

where p̂µj ≡ p̂µ(yj, zj, z̄j) is given by (2.6) satisfying p̂2
i = −1. By construction Ã∆1,··· ,∆n(wi, w̄i)

transforms covariantly under SL(2,C),

Ã∆1,··· ,∆n

(
awi + b

cwi + d
,
āw̄i + b̄

c̄w̄i + d̄

)
=

(
n∏
i=1

|cwi + d|2∆i

)
Ã∆1,··· ,∆n(wi, w̄i) . (2.14)

2.2 Analytic Continuation and the Massless Wavefunction

The integral expression (2.10) is only a formal definition for the conformal primary wave-

function since the integral is divergent for real mass m. More rigorously, we should define our

conformal primary wavefunction by analytic continuation of the integral expression (2.10)

from an unphysical region. When the mass is purely imaginary m ∈ −iR+ and Xµ lies inside

the future lightcone, the outgoing wavefunction (2.10) is convergent and can be evaluated as

φ+
∆,m(Xµ;w, w̄) =

4π

|m|
(
√
−X2)∆−1

(−Xµqµ)∆
K∆−1

(
|m|
√
−X2

)
,

if X0 > 0 , XµXµ < 0 , m ∈ −iR+ , (2.15)

where qµ is a null vector in R1,3 defined as

qµ =
(
1 + |w|2, w + w̄,−i(w − w̄), 1− |w|2

)
. (2.16)

After landing on the Bessel function expression (2.15), we can then analytically continue it

to real mass m and other regions in R1,3,

φ±∆,m(Xµ;w, w̄) =
4π

im

(
√
−X2)∆−1

(−Xµqµ ∓ iε)∆
K∆−1

(
im
√
−X2

)
. (2.17)

We have introduced an iε prescription to regularize the integral (2.10) in the case of real mass

m. In practice, the integral representation (2.10) will however prove to be more convenient

to compute the scattering amplitudes of these conformal primary wavefunctions.
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We note that at late times inside the future lightcone, the wave equation takes the

asymptotic form

(∂µ∂µ −m2)φ = (−∂2
τ −

3

τ
∂τ −m2 + · · · )φ , τ 2 = −XµXµ →∞ . (2.18)

This is solved to leading nontrivial order at large τ by

φ =
e±imτ

τ 3/2
φ(0)(y, z, z̄) + · · · , (2.19)

where φ(0) is any function on H3. One may check that (2.17) with X2 < 0 takes this form.

On the other hand, outside the lightcone near spatial infinity we have

(∂µ∂µ −m2)φ = (∂2
σ +

3

σ
∂σ −m2 + · · · )φ , σ2 = XµXµ →∞ . (2.20)

This is solved to leading nontrivial order at large σ by

φ =
e±mσ

σ3/2
φ̃(0)(y, z, z̄) + · · · , (2.21)

with φ̃(0) any function on dS3. One may verify that (2.17) with X2 > 0 takes this form.6

From the Bessel function expression (2.17) we can take the m → 0 limit to obtain the

massless conformal primary wavefunction (assuming Re(∆) > 1),7

φ±∆,m=0(Xµ;w, w̄) =
1

(−Xµqµ ∓ iε)∆
. (2.22)

The massless conformal primary wavefunction has been considered in [2, 8, 19–21].

3 Massive Three-Point Amplitude

In this section we will consider the tree-level three-point amplitude Ã(wi, w̄i) of the conformal

primary wavefunction (2.10) φ±∆i,mi
(Xµ;wi, w̄i), interacting through a local cubic vertex in

R1,3,

L ∼ λφ1φ2φ3 + · · · . (3.1)

The three point scattering amplitude for plane waves is then simply

A(pi) = i(2π)4λ δ(4)(−p1 + p2 + p3) . (3.2)

6One should take the square root in (2.17) corresponding to the decaying exponent when Xµ is outside

the lightcone.
7Here we have dropped an overall constant factor compared to the massless limit of (2.17).
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For conformal primary wavefunctions we have

Ã(wi, w̄i) = iλ

∫
d4X φ−∆1,m1

(Xµ;w1, w̄1)
3∏
i=2

φ+
∆i,mi

(Xµ;wi, w̄i) , (3.3)

where we take the first particle to be incoming and the other two be outgoing. The three-

point amplitude is fixed by the SL(2,C) covariance (2.2) to be proportional to the standard

three-point function in a two-dimensional CFT:

Ã(wi, w̄i) ∼
λ

|w1 − w2|∆1+∆2−∆3|w2 − w3|∆2+∆3−∆1|w3 − w1|∆3+∆1−∆2
, (3.4)

but it is nevertheless satisfying to see this formula explicitly appear in a 4D scattering

amplitude. We wish to determine the finite proportionality constant which is a function of

the masses mi and the conformal dimensions ∆i. In general these are given by the integral

expression (3.3) which may not be possible to analytically evaluate. We will compute this

constant explicitly in the near-extremal case when the mass of the first particle is slightly

heavier than the sum of those of the other two. In this case the integral simplifies considerably

and the three-point amplitude reduces to the tree-level three-point Witten diagram in H3.

Let the mass of the first particle be 2(1 + ε)m with ε ≥ 0 and the masses of the other

two particles be m. Evaluating the Xµ-integral, we arrive at the following expression for the

scalar three-point amplitude,8

Ã(wi, w̄i) = i(2π)4λm−4

(
3∏
i=1

∫ ∞
0

dyi
y3
i

∫
dzidz̄i

)
3∏
i=1

G∆i
(yi, zi, z̄i;wi, w̄i) δ

(4)(−2(1 + ε)p̂1 + p̂2 + p̂3) ,

(3.5)

where p̂µi ≡ p̂µ(yi, zi, z̄i) as defined in (2.6). Note the integral does not take the form of a

tree-level three-point Witten diagram in H3 for general ε ≥ 0.

We now perform the y3, z3, z̄3-integrals to get rid of three delta functions. As a result,

we have

Ã(wi, w̄i) = i2(2π)4λm−4

(∫ ∞
0

dy1

y3
1

∫
dz1dz̄1

)(∫ ∞
0

dy2

y3
2

∫
dz2dz̄2

) 3∏
i=1

G∆i
(yi, zi, z̄i;wi, w̄i)

× 1

2(1 + ε)y−1
1 − y−1

2

δ

(
2(1 + ε)

y1 − 2(1 + ε)y2

[
−2εy1y2 + (y2 − y1)2 + |z2 − z1|2

])
, (3.6)

8We will use the integral representation (2.10) of the conformal primary wavefunction to simplify the

calculation of the amplitude and eventually make contact with the Witten diagram in H3 in the near extremal

limit. However, as discussed at the end of Section 2, the integral representation of our the conformal primary

wavefunction is divergent for real mass m and the proper definition requires an analytic continuation from

the Bessel function expression (2.15). Nonetheless, we will see that the three-point amplitude computed

using the integral representation turns out to be finite.
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where we have replaced

y3 =
1

2(1 + ε)y−1
1 − y−1

2

, z3 =
2(1 + ε)y−1

1 z1 − y−1
2 z2

2(1 + ε)y−1
1 − y−1

2

. (3.7)

The overall factor 2 is due to the Jacobian coming from rearranging the arguments of the

delta functions. Now let us perform a change of variables from (y2, z2, z̄2) to (R, θ, φ),

y2 = y1 +R cos θ , z2 = z1 +R sin θ eiφ , 0 ≤ θ ≤ θ∗(y1, R) . (3.8)

The upper bound of θ is given by

θ∗(y1, R) =

{
π , if R < y1 ,

cos−1
(
−y1

R

)
, if R ≥ y1 .

(3.9)

which comes from the constraint cos θ = y2−y1

R
≥ −y1

R
. We can then rewrite the three-point

amplitude as

Ã(wi, w̄i) = i2(2π)4λm−4

∫ ∞
0

dy1

y3
1

∫
dz1dz̄1

∫ ∞
0

dRR2

∫ θ∗(y1,R)

0

dθ sin θ

∫ 2π

0

dφ

×
3∏
i=1

G∆i
(yi, zi, z̄i;wi, w̄i)

y1

((2ε+ 1)y1 + 2(1 + ε)R cos θ) (y1 +R cos θ)2

× δ
(

2(1 + ε)

(2ε+ 1)y1 + 2(1 + ε)R cos θ

[
R2 − 2εy1(y1 +R cos θ)

])
, (3.10)

with y2, z2, z̄2 and y3, z3, z̄3 replaced by (3.8) and (3.7). The delta function has support on

R =
√
ε
√

2 + ε cos2 θ y1 + εy1 cos θ . (3.11)

So far we have not taken any limit on the masses 2(1 + ε)m,m,m of the three particles.

Now let us consider the near extremal limit ε → 0. In this limit the three momenta mip̂i
become collinear and the corresponding points (yi, zi, z̄i) in H3 become coincident. To leading

order in
√
ε, the solution of R can be approximated by

R =
√

2εy1 +O(ε) . (3.12)

In the near extremal limit we have R ∼ 0, hence the three bulk points yi, zi, z̄i in H3 become

coincident as commented above. We can then bring the three bulk-to-boundary propagators

outside the R, θ, φ-integral. Next, by a simple power counting of R, we find that the three-

point amplitude of the conformal primary wavefunction is zero when ε = 0, which is related

to the fact that the the phase space vanishes for marginal decay process. We should proceed
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to the subleading order in the near extremal expansion to obtain a nonzero answer, which

is9

Ã(wi, w̄i) =
i(2π)5λ

m4

∫ ∞
0

dy1

y3
1

∫
dz1dz̄1

3∏
i=1

G∆i
(y1, z1, z̄1;wi, w̄i)

× 1

y1

∫ ∞
0

dRR2

∫ π

0

dθ sin θ δ
(
R2 − 2εy2

1

)
+O(ε) (3.13)

=
i2

11
2 π5λ

m4

√
ε

(∫ ∞
0

dy1

y3
1

∫
dz1dz̄1

3∏
i=1

G∆i
(y1, z1, z̄1;wi, w̄i)

)
+O(ε)

=
i2

9
2π6λΓ(∆1+∆2+∆3−2

2
)Γ(∆1+∆2−∆3

2
)Γ(∆1−∆2+∆3

2
)Γ(−∆1+∆2+∆3

2
)
√
ε

m4Γ(∆1)Γ(∆2)Γ(∆3)|w1 − w2|∆1+∆2−∆3|w2 − w3|∆2+∆3−∆1|w3 − w1|∆3+∆1−∆2
+O(ε) ,

where the term in the parentheses in the second to last line is precisely the tree-level three-

point Witten diagram in H3, which was evaluated in [28]. Hence the near extremal massive

three-point amplitude takes the form of the three-point function of scalar primaries with

conformal dimensions ∆i in a two-dimensional CFT.
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A Klein-Gordon Inner Product

In this section we evaluate the Klein-Gordon inner product between two conformal primary

solutions with the same mass m and generic complex weights ∆1,2. SL(2,C) implies this

must vanish for ∆1 6= ∆∗2, while some kind of delta function is expected at ∆1 = ∆∗2.

The Klein-Gordon inner product between two outgoing wavefunctions φ+
∆1,m

(Xµ;w1, w̄1)

9Note that in the near extremal limit ε→ 0, the upper bound θ∗(y1, R) of the angular coordinate becomes

π on the support of the delta function.
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and φ+
∆2,m

(Xµ;w2, w̄2) evaluated on the slice X0 = 0 is

(φ+
1 , φ

+
2 ) = −i

∫
d3 ~X

[
φ+

∆1,m
(Xµ;w1, w̄1)∂X0φ+∗

∆2,m
(Xµ;w2, w̄2)

− ∂X0φ+
∆1,m

(Xµ;w1, w̄1)φ+∗
∆2,m

(Xµ;w2, w̄2)
]

=(2π)3m−2

(
2∏
i=1

∫ ∞
0

dyi
y3
i

∫
dzidz̄i

)
G∆1(y1, z1, z̄1;w1, w̄1)G∗∆2

(y2, z2, z̄2;w2, w̄2)

×
(

1 + y2
1 + |z1|2

2y1

+
1 + y2

2 + |z2|2

2y2

)
δ(2)

(
z1

y1

− z2

y2

)
δ

(
1− y2

1 − |z1|2

2y1

− 1− y2
2 − |z2|2

2y2

)
=2(2π)3m−2

∫ ∞
0

dy

y3

∫
dzdz̄G∆1(y, z, z̄;w1, w̄1)G∗∆2

(y, z, z̄;w2, w̄2) . (A.1)

Using the Feynman trick,

1

AaBb
=

Γ(a+ b)

Γ(a)Γ(b)

∫ 1

0

dα
αa−1(1− α)b−1

(αA+ (1− α)B)a+b
, (A.2)

we can perform the integrals in y, z, z̄ to obtain

(φ+
1 , φ

+
2 ) = 2(2π)3m−2 πΓ(

∆1+∆∗
2−2

2
)Γ(

∆1+∆∗
2

2
)

2Γ(∆1)Γ(∆∗2)|w1 − w2|∆1+∆∗
2

∫ 1

0

dαα
∆1−∆∗

2
2
−1(1− α)

−∆1+∆∗
2

2
−1 . (A.3)

Here ∆∗2 is the complex conjugate of ∆2. If we let η =
∆1−∆∗

2

2
, α = eu

eu+e−u∫ 1

0

dααη−1(1− α)−η−1 = 2

∫ ∞
−∞

due2uη . (A.4)

This is divergent if η is real, and equals to 2πδ(λ) if η = iλ is pure imaginary. Therefore,

in order to have a delta function normalizable inner product, we require ∆i’s to be complex

numbers with the same real part, ∆1 = a + iλ1, ∆2 = a + iλ2 (a, λi ∈ R). The Klein-

Gordon inner product for complex conformal dimensions, equal mass conformal primary

wavefunction is,

(φ+
1 , φ

+
2 ) = 64π5m−2 1

(∆1 + ∆∗2 − 2) |w1 − w2|∆1+∆∗
2
δ(λ1 + λ2) . (A.5)
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