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Abstract

We provide a unified treatment of conformally soft Goldstone modes which arise when

spin-one or spin-two conformal primary wavefunctions become pure gauge for certain in-

teger values of the conformal dimension ∆. This effort lands us at the crossroads of two

ongoing debates about what the appropriate conformal basis for celestial CFT is and what

the asymptotic symmetry group of Einstein gravity at null infinity should be. Finite en-

ergy wavefunctions are captured by the principal continuous series ∆ ∈ 1 + iR and form

a complete basis. We show that conformal primaries with analytically continued confor-

mal dimension can be understood as certain contour integrals on the principal series. This

clarifies how conformally soft Goldstone modes fit in but do not augment this basis. Con-

formally soft gravitons of dimension two and zero which are related by a shadow transform

are shown to generate superrotations and non-meromorphic diffeomorphisms of the celestial

sphere which we refer to as shadow superrotations. This dovetails the Virasoro and Diff(S2)

asymptotic symmetry proposals and puts on equal footing the discussion of their associated

soft charges, which correspond to the stress tensor and its shadow in the two-dimensional

celestial CFT.
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1 Introduction

The realization that soft theorems in gauge theory and gravity are manifestations of Ward identi-

ties for asymptotic symmetries [1–3] has reinvigorated recent attempts at flat space holography [4]

as well as reopened some questions regarding what the physical asymptotic symmetry group of

asymptotically flat spacetime should be [5–7]. One of the key milestones from applying this

paradigm is that it solidifies [8] a conjectured extension [9] of the BMS group to include su-

perrotations [10–12], based on a newly discovered subleading soft graviton theorem [13]. This

precipitated two parallel initiatives within the field.

On the one hand, the subleading soft graviton mode is a natural stress tensor candidate [14]

for a putative dual celestial CFT with a Virasoro symmetry. This provoked reexamining scat-

tering amplitudes in a basis [15–17] that makes conformal covariance manifest which, in turn,

demanded a new understanding of the conformal analog of soft theorems [18–27]. While the

leading conformally soft graviton naturally arises as the zero mode in this discussion, a puzzling

question arose on how the subleading conformally soft graviton would fit into the appropriate

conformal basis for celestial amplitudes.

On the other hand, while the leading soft graviton theorem is equivalent to the Ward identity

of BMS supertranslation symmetry, the correspondence between the subleading soft graviton

theorem and the proposed asymptotic Virasoro superrotation1 symmetry does not appear to

be bijective. Questions were raised as to whether the asymptotic symmetry group should be

extended from the double copy Virasoro symmetry generated by local conformal Killing vectors

(CKVs) to arbitrary diffeomorphisms of the celestial sphere (Diff(S2)) [28–30]. Unlike for local

CKVs, the Ward identity for Diff(S2) symmetry appears to be equivalent to the subleading soft

graviton theorem [31], but the price to pay for this enlarged asymptotic symmetry group is a

relaxed set of boundary conditions which modify the metric of the celestial sphere at leading

order.

This paper provides a unified treatment of conformally soft Goldstone modes which lands us

at the crossroads of these two ongoing themes and offers a resolution to some of the tensions

surrounding what the appropriate conformal basis for celestial amplitudes is, and what the

appropriate asymptotic symmetry group for Einstein gravity at null infinity should be.

Four-dimensional scattering amplitudes exhibit conformal properties when the standard plane

wave modes are replaced by so-called conformal primary wavefunctions. These are labeled by the

conformal dimension ∆ and spin J of the representation of the 4D Lorentz group SL(2,C) which

acts as the 2D conformal group on the celestial sphere at null infinity. In [16] it was shown that

finite energy modes are captured by conformal primary wavefunctions on the principal continuous

1By superrotations we collectively mean the angle-dependent generalization of rotations and boosts. They are

distinguished from general diffeomorphisms of the celestial sphere.
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series ∆ ∈ 1 + iR and that these form a conformal basis. Whereas, in the momentum basis, the

leading and subleading soft poles of scattering amplitudes arise in a series expansion near ω → 0,

in the conformal basis, the leading and subleading conformally soft theorems arise from different

limits of the conformal dimension ∆ [16, 18–24]. As shown in [19], the asymptotic large U(1)

Kac-Moody symmetry of gauge theory and the BMS supertranslation symmetry of gravity are

generated by respectively spin-one and spin-two conformal primaries with conformal dimension

∆ = 1. Insertions of these ∆ = 1 modes into celestial amplitudes give rise to conformally soft

factorization theorems in gauge theory [20,32,33] and gravity [22–24].

Furthermore, a subleading conformally soft theorem in gravity is obtained [22,24] in the ∆ = 0

limit of celestial graviton amplitudes. This corresponds to the insertion of a conformally soft

graviton whose conformal dimension does not lie on the principal continuous series. This theme

appears to continue for the subsubleading conformally soft theorem in gravity which arises in

the ∆ = −1 limit of celestial graviton amplitudes [24], as well as for the subleading conformally

soft theorem for celestial gluon amplitudes which is obtained in the ∆ = 0 limit [22]. The nature

of this analytic continuation in conformal dimension raised some questions. In particular, it

was unclear how these modes would fit with the results of [16] that the principal continuous

series wavefunctions form a complete basis. Here we show how conformally soft primaries with

analytically continued conformal dimensions can be understood as certain contour integrals along

the principal continuous series. These modes therefore do not augment the conformal basis, even

with zero energy modes taken into account.

Related to the subleading ∆ = 0 conformally soft graviton h0 by a shadow transform is

the ∆̃ = 2−∆ = 2 spin-two conformal primary h̃2. The modes h0 and h̃2 are both pure diffeo-

morphisms. Near null infinity, h̃2 matches the form of a superrotation [19] thus supporting an

asymptotic Virasoro symmetry. Its relation to the stress tensor for a putative celestial CFT,

which is the soft charge, was examined in [19,34]. On the other hand, h0 does not obey the stan-

dard fall-off conditions. Instead, we will show that it generates an asymptotic Diff(S2) symmetry.

The corresponding soft charge is divergent and a regularization method needs to be employed.

Following [29] we take care of radial divergences by adding appropriate boundary terms and

demand consistency with the subleading soft graviton theorem. The renormalized soft Diff(S2)

charge we eventually arrive at turns out to be the shadow transform of the 2D stress tensor.

Why was such a renormalization procedure not needed in computing the soft superrotation

charge [8, 35]? In fact, even superrotations modify the round metric of the celestial sphere

at isolated points when the generator is not part of the global SL(2,C). Here we show that

when keeping track of these contact terms in the diffeomorphism vector field associated to h̃2, a

regularization method akin to the one used in defining a soft Diff(S2) charge [29] is required in

order to derive the soft superrotation charge.
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This puts the conformally soft gravitons h̃2 and h0 on equal footing and dovetails the Virasoro

and Diff(S2) asymptotic symmetry proposals. In [8] the subleading soft graviton theorem was

shown to imply a Ward identity for superrotations within semiclassical S-matrix elements which

is given by the conformally soft graviton h̃2. Campiglia and Laddha then demonstrated in [31]

an equivalence between the subleading soft graviton theorem and the Ward identity for certain

Diff(S2) transformations which turn out to be none other than the conformally soft graviton

h0. Here we see, that the shadow operation implies that the converse of the relation found

in [8] also holds. This is illustrated in Figure 1. The asymptotic symmetry group for Einstein

gravity at null infinity should thus include the closure of Virasoro under shadows within Diff(S2).

The Ward identity for this enlarged symmetry group is equivalent to the Cachazo-Strominger

soft theorem [13]. If one allows more general convolutions than the shadow transformation, the

asymptotic symmetry group extends to all of Diff(S2).

〈out|[QY z= 1
6(z−w)

,S]|in〉 = 0

Superrotation Ward Identity

〈out|[Q
Y z=− 1

2
(z−w)2

(z̄−w̄)

,S]|in〉 = 0

Shadow Superrotation ∈ Diff(S2) Ward Identity

lim
ω→0

(1 + ω∂ω)〈out|a−(q)S|in〉 = S(1)−〈out|S|in〉
Subleading Soft Graviton Theorem

shadow

[8] [31]

Figure 1 – Superrotations imply the subleading soft graviton theorem so long as the asymptotic

Virasoro symmetry group is enhanced to include shadow superrotations.

We thus come away with a better understanding of both the debate around Virasoro, gener-

ated by local CKVs, versus Diff(S2), generated by arbitrary vector fields, and the interpretation

of conformal primaries with analytically continued conformal dimension with respect to the

principal continuous series basis. Moreover, the machinery we develop is primed to tackle in-

terpretations of further subleading soft modes [22, 24] which are not pure gauge, as well as the

corresponding memory effects in gauge theory and gravity which involves a careful handling of

an admixture of incoming and outgoing modes as explained in [19]. We leave these interesting

topics to future work.

This paper is organized as follows. We begin by establishing our coordinate conventions

in section 2. In section 3, we review properties of the Mellin transform (section 3.1) and the

relevant conformal primary wavefunctions from [16] (sections 3.2-3.3). We build most of the tools

we will need in section 4. In section 4.1 we use properties of the Mellin inversion theorem to
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define a useful distribution that helps us analytically continue results previously established for

wavefunctions on the principal series. We discuss practical regularizations of this distribution

and then show in section 4.2 how applying them offers a quaint interpretation of modes off the

principal series in terms of superpositions of modes on the principal series. This straightens out

previous attempts [34] at interpreting symplectic pairings between wavefunctions with arbitrary

conformal dimensions (section 4.3) and clarifies the principal series mode expansion [16,19] which

we write down in section 4.4. We conclude this section by combining these results and tools to

define analytically continued mode operators in section 4.5 which we connect to soft charges for

asymptotic symmetries in section 5. Sections 5.1 and 5.2 are mainly a review of the results of [19]

which identified the conformal primary modes corresponding to the leading soft photon and soft

graviton theorems. In section 5.3 we apply the methods of section 4 to the subleading soft

graviton and identify the spin-two Goldstone modes h̃2 and h0 with generators of the proposed

Virasoro and Diff(S2) symmetry groups of Einstein gravity at null infinity. We show how a

careful treatment of contact terms puts them on equal footing in computing the soft charges. As

a further payoff, this illuminates an under-appreciated connection to the work of [29,31] even for

superrotations.

2 Coordinate Conventions

We begin by outlining our coordinate conventions in this section. Cartesian coordinates on

four-dimensional Minkowski spacetime2 R1,3 are related to Bondi coordinates (u, r, z, z̄) by the

transformation

X0 = u+ r , X1 = r
z + z̄

1 + zz̄
, X2 = −ir z − z̄

1 + zz̄
, X3 = r

1− zz̄
1 + zz̄

, (2.1)

which maps the Minkowski line element to

ds2 = −du2 − 2dudr + 2r2γzz̄dzdz̄ with γzz̄ =
2

(1 + zz̄)2
. (2.2)

One reaches future null infinity I+ by holding (u, z, z̄) fixed and going to large r, and we refer

to the S2 cross section of future null infinity as the celestial sphere. Corresponding quantities

exist in an expansion near past null infinity where v = u+ 2r is held fixed in place of u, with a

corresponding past celestial sphere. For any asymptotic symmetry under consideration only an

appropriate diagonal subgroup acting simultaneously on future and past null infinity will be a

symmetry of the four-dimensional scattering problem [3].

A massless particle crosses the celestial sphere at a point (w, w̄) with momentum

pµ = ωqµ(w, w̄) , (2.3)

2We use signature convention (−,+,+,+).
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with ω ≥ 0 and qµ(w, w̄) a null vector given by

qµ(w, w̄) = (1 + ww̄, w + w̄,−i(w − w̄), 1− ww̄) . (2.4)

Under an SL(2,C) transformation

w → aw + b

cw + d
, w̄ → āw̄ + b̄

c̄w̄ + d̄
, (2.5)

qµ transforms as a vector up to a conformal weight3

qµ → qµ
′
= |cw + d|−2Λµ

νq
ν . (2.6)

Here ad − bc = 1 and Λµ
ν is the associated SL(2,C) group element in the four-dimensional

representation. Note that null vectors (2.4) satisfy

qµ(w, w̄)qµ(w′, w̄′) = −2|w − w′|2 , (2.7)

and the derivative of (2.4) with respect to w (w̄) gives the photon polarization vector εµw (εµw̄) of

positive (negative) helicity:

∂wq
µ =
√

2εµw(q) = (w̄, 1,−i,−w̄) , ∂w̄q
µ =
√

2εµw̄(q) = (w, 1, i,−w) . (2.8)

These satisfy

εw · q = 0 , εw · εw = 0 , εw · εw̄ = 1 , (2.9)

and similarly for w ↔ w̄. The graviton polarization tensor of positive (negative) helicity is

εµνw = εµwε
ν
w (εµνw̄ = εµw̄ε

ν
w̄).

3 Conformal Primary Wavefunctions

Four-dimensional scattering amplitudes were recently shown [15, 17] to exhibit conformal prop-

erties when the standard plane wave basis is replaced by a basis of so-called conformal primary

wavefunctions [16]. For massless fields this can be achieved via a Mellin transform. In this section

we review the construction in [16]4 of conformal primaries in gauge theory and gravity which

form a complete conformal basis for single particle states when the spectrum is the principal

continuous series of the Lorentz group.

3The energy p0 = ω(1 + ww̄) transforms as p0 → p0Λ0
0 while ω → ω|cw + d|2.

4This builds on earlier work [36–39] using the embedding space formalism.
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3.1 The Mellin Transform

The Mellin transform is defined as follows

M[f ](∆) =

∫ ∞
0

dωω∆−1f(ω) ≡ ϕ(∆) , (3.1)

with the inverse transform given by

M−1[ϕ](ω) =
1

2πi

∫ c+i∞

c−i∞
d∆ω−∆ϕ(∆) = f(ω) . (3.2)

The Mellin transform is well defined for functions f(ω) such that∫ ∞
0

dωωk−1|f(ω)| <∞ , (3.3)

for some k > 0, and the existence of the inverse transform requires c > k. If these conditions are

satisfied then we have the identity

ϕ(∆) =M[M−1[ϕ]](∆) . (3.4)

3.2 Conformal Primaries from Mellin Transforms of Plane Waves

The Mellin transform (3.1) and its inverse transform (3.2) allow us to go back and forth between

the plane wave basis of the standard momentum-space formulation of massless scattering pro-

cesses and wavefunctions that transform as conformal primaries under the Lorentz group. The

relevant pair of functions is given by

f(ω) = e±iωq·X−εωq
0

with ε > 0 ,

ϕ(∆) =
Γ(∆)

(±i)∆

1

(−q ·X ∓ iεq0)∆
with Re[∆] > 0

≡ φ∆,±(Xµ;w; w̄) ,

(3.5)

where in the last line we introduced the massless spin-zero conformal primary wavefunction.

Spin-one and spin-two massless conformal primary wavefunctions are gauge equivalent to Mellin

transforms of plane waves multiplied by the appropriate polarization vectors and tensors as we

will discuss in the following. Note that the iε-prescription in (3.5) is added to make the Mellin

integral convergent or to circumvent the singularity at q · X = 0. This can be achieved by the

imaginary timelike shift Xµ → Xµ
± = Xµ ± iεV µ with V µ = (−1, 0, 0, 0). The appearance of the

conformal factor q0 = 1 + ww̄ is a consequence of the parametrization of the momentum (2.3)-

(2.4). In Bondi coordinates X2
± is then regulated at the light-sheet by u→ u∓ iε.
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3.2.1 Gauge Theory

The outgoing (+) and incoming (−) massless spin-one conformal primary wavefunctions are [16,

18]

A∆,±
µ;a (Xµ;w, w̄) =

(−q ·X±)∂aqµ + (∂aq ·X±)qµ
(−q ·X±)∆+1

=
∆− 1

∆

√
2(±i)∆

Γ(∆)
V ∆,±
µ;a +∇µα

∆,±
a ,

(3.6)

where a = w or w̄ and V ∆,±
µ;a is the Mellin transform of a plane wave

V ∆,±
µ;a = εµ;aφ

∆,± , (3.7)

with the polarization vector εµ;a = 1√
2
∂aqµ and the residual gauge parameter is

α∆,±
a =

∂aq ·X±
∆(−q ·X±)∆

. (3.8)

The wavefunctions (3.6) satisfy both Lorenz and radial gauge conditions

∇µA∆,±
µ;a = 0 , Xµ

±A
∆,±
µ;a = 0 , (3.9)

and are solutions to the source-free four-dimensional Maxwell equations, which reduce in this

gauge to

∇ρ∇ρA∆,±
µ;a = 0 , (3.10)

with field strength F∆,±
µν;a = ∇µA

∆,±
ν;a −∇νA

∆,±
µ;a given by

F∆,±
µν;a =

(∆− 1)(qµ∂aqν − qν∂aqµ)

(−q ·X±)∆+1
. (3.11)

The wavefunctions (3.6) transform as two-dimensional conformal primaries with conformal

dimensions (h, h̄) = 1
2
(∆ + J,∆− J) under an SL(2,C) Lorentz transformation:

A∆,±
µ;a

(
Λρ
νX

ν ;
aw + b

cw + d
,
āw̄ + b̄

c̄w̄ + d̄

)
= (cw + d)2h(c̄w̄ + d̄)2h̄Λ σ

µ A
∆,±
σ;a (Xρ;w, w̄) , (3.12)

where the index a = w corresponds to the spin J = +1 (positive helicity) while a = w̄ corresponds

to J = −1 (negative helicity). In two-dimensional conformal field theory, the shadow transform

maps a primary with conformal dimension ∆ to a primary with conformal dimension ∆̃ = 2−∆.

The shadow transform of the spin-one conformal primary wavefunction (3.6) is [16]

Ã∆,±
µ;ā = (−X2

±)1−∆A2−∆,±
µ;a ≡ Ã∆̃,±

µ;a . (3.13)
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3.2.2 Gravity

The outgoing (+) and incoming (−) massless spin-two conformal primary wavefunctions are

h∆,±
µν;a(X

µ;w, w̄) =
1

2

[(−q ·X±)∂aqµ + (∂aq ·X±)qµ][(−q ·X±)∂aqν + (∂aq ·X±)qν ]

(−q ·X±)∆+2

=
∆− 1

∆ + 1

(±i)∆

Γ(∆)
V ∆,±
µν;a +∇µζ

∆,±
ν;a +∇νζ

∆,±
µ;a ,

(3.14)

where V ∆,±
µν;a is the Mellin transform of a plane wave

V ∆,±
µν;a = εµν;aφ

∆,± , (3.15)

with polarization tensor εµν;a = 1
2
∂aqµ∂aqν , and the residual diffeomorphism is

ζ∆,±
µ;a =

1

2(∆ + 1)

(
∂aqµ(∂aq ·X±)

(−q ·X±)∆
+

1

2

qµ(∂aq ·X±)2

(−q ·X±)∆+1

)
. (3.16)

They satisfy harmonic and radial gauge conditions

ηµνh∆,±
µν;a = 0 , ∇µh∆,±

µν;a = 0 , Xµ
±h

∆,±
µν;a = 0 , (3.17)

and are solutions to the vacuum linearized Einstein equations, which reduce to

∇ρ∇ρh∆,±
µν;a(X

µ;w, w̄) = 0 . (3.18)

The wavefunctions (3.14) transform as both a four-dimensional traceless symmetric rank-two

tensor and as two-dimensional spin-two conformal primaries with conformal dimension (h, h̄) =
1
2
(∆ + J,∆− J) under an SL(2,C) Lorentz transformation:

h∆,±
µν;a

(
Λµ
νX

ν ;
aw + b

cw + d
,
āw̄ + b̄

c̄w̄ + d̄

)
= (cw + d)∆+J(c̄w̄ + d̄)∆−JΛ ρ

µ Λ σ
ν h

∆,±
ρσ;a(X

µ;w, w̄) . (3.19)

The two-dimensional index a = ww corresponds to spin J = +2 (positive helicity) while a = w̄w̄

corresponds to J = −2 (negative helicity). The shadow transform of the spin-two conformal

primary wavefunction (3.14) is [16]

h̃∆,±
µν;ā = (−X2

±)1−∆h2−∆,±
µν;a ≡ h̃∆̃,±

µν;a , (3.20)

and has conformal dimension ∆̃ = 2−∆.
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3.3 Conformal Basis

To determine the values of the conformal dimension ∆ of the spin-one and spin-two conformal

primary wavefunctions relevant to physical scattering processes we now turn to a discussion of

the conformal basis. A natural inner product between complex spin-one wavefunctions is

(A,A′)Σ = −i
∫
dΣρ

[
AνF ′

∗
ρν − A′

∗ν
Fρν
]
, (3.21)

and between complex spin-two wavefunction is (see e.g. [40–43])

(h, h′)Σ = −i
∫
dΣρ

[
hµν∇ρh

′∗
µν−2hµν∇µh

′∗
ρν+h∇µh′∗ρµ−h∇ρh

′∗+hρµ∇µh′∗−(h↔ h′∗)
]
, (3.22)

where Σ is a Cauchy surface and h = hσσ vanishes for conformal primaries due to the tracelessness

condition (3.17). The inner products for Mellin representatives V ∆,±
µ;a and V ∆,±

µν;a , defined in

equations (3.7) and (3.15) for ∆ on the principal continuous series of the Lorentz group, i.e.

∆ = 1 + iλ with λ ∈ R, were evaluated by one of us and Shao in [16]. The result for both

spin-one and spin-two on a constant X0 slice is

(V 1+iλ,±
a , V 1+iλ′,±

a′ )Σ0 = ±(2π)4δaa′δ
(2)(w − w′)δ(λ− λ′) , (3.23)

and hence pairs ∆ = 1 + iλ modes with their ∆ = 1 − iλ partners. It was further shown that

these form a complete basis for finite energy wavefunctions.5

4 General Conformal Dimension

In this section we show that conformal primaries with ∆ ∈ C can be expressed as a superposition

of conformal primaries on the principal continuous series ∆ ∈ 1 + iR. It is then natural to

expand general fields and define asymptotic charges purely in terms of primaries on the principal

continuous series. We compute the inner product for conformal primaries with general conformal

dimension and use it to define operators that shift the gauge field and the metric at null infinity.

We will be particularly interested in special values of ∆ ∈ Z corresponding to Goldstone modes

of spontaneously broken asymptotic symmetries [16, 18]. These operators will be related to soft

asymptotic charges in section 5.

5These inner products are invariant under gauge transformations that vanish sufficiently rapidly. They are

not invariant under large gauge transformations, which are zero energy modes. This is important when compar-

ing (3.23) to (4.20) and (4.21).
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4.1 Generalized Delta Function

Given the existence of the Mellin transform and its inverse as stated in section 3.1, we begin

with the identity

ϕ(∆) =M[M−1[ϕ]](∆) , (4.1)

which, using the definitions (3.1)-(3.2), is explicitly

ϕ(∆) =

∫ ∞
0

dωω∆−1 1

2πi

∫ c+i∞

c−i∞
dz ω−zϕ(z)

=

∫ c+i∞

c−i∞
(−idz)

(
1

2π

∫ ∞
0

dω ω∆−z−1

)
ϕ(z) .

(4.2)

This leads us to define the distribution

δ(i(∆− z)) ≡ 1

2π

∫ ∞
0

dωω∆−z−1 , (4.3)

which will serve the role of a generalization of the Dirac delta function to the complex plane with

the property

ϕ(∆) =

∫ c+i∞

c−i∞
(−idz)δ(i(∆− z))ϕ(z) , (4.4)

for ∆ ∈ C, and c determined by the condition for existence of the Mellin inverse described above.

In what follows, we will need to distinguish the three different conditions the z-contour c+ iR
in (4.4) can obey.

• For c = Re(∆) we have Re(∆ − z) = 0 in the integrand of (4.4). In this case, the

generalized distribution (4.3) reduces to the Dirac delta function with argument Im(∆−z),

as can be shown by a change of variables ω = ex.

To discuss the other types of contours, it will be useful to introduce the following regulated

versions of the generalized distribution (4.3) which converge on the respective contour.

• For c < Re(∆) we define

δν,>(i(∆− z)) ≡ 1

2π

∫ ∞
0

dωω∆−z−1e−νω , Re(∆− z) > 0

=
1

2π
νz−∆Γ(∆− z) ,

(4.5)

where ν > 0.

• For c > Re(∆) we define

δν,<(i(∆− z)) ≡ 1

2π

∫ ∞
0

dωω∆−z−1e−ν/ω , Re(∆− z) < 0

=
1

2π
ν∆−zΓ(z −∆) ,

(4.6)

where ν > 0.
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The Gamma functions appearing in these expressions can be analytically continued to the entire

complex plane except for an infinite set of poles at the non-positive integers. These expressions

are to be understood inside contour integrals of the form (4.4) which can be computed using

Cauchy’s theorem from the residues of the Gamma function

Resx=−nΓ(x) =
(−1)n

Γ(n+ 1)
. (4.7)

We will now show that the analog of (4.4) holds when one substitutes (4.5) or (4.6) for (4.3)

and takes the ν → 0 limit, namely that

ϕ(∆) = lim
ν→0

∫ c+i∞

c−i∞
(−idz)δν,≷(i(∆− z))ϕ(z) . (4.8)

Let’s start with the regularized distribution (4.5) in (4.8). First, note that Γ(∆ − z) → 0 as

Re(z)→ +∞. We would thus like to close the contour in (4.8) to the right. We will be allowed

to do so, so long as ϕ(z) does not grow fast enough to negate or outpace the suppression of the

Gamma function along this arc. We will allow ϕ(z) to have poles at some set of points {zk} in

this region. Since Re(∆) > c we also pick up the residues of the poles of the Gamma function at

z = ∆ + n with n ∈ {0, 1, 2, . . .}. Then, using (4.7) we arrive at

lim
ν→0

∫ c+i∞

c−i∞
(−idz)δν,>(i(∆− z))ϕ(z) = lim

ν→0

[ ∞∑
n=0

νn
(−1)n

Γ(n+ 1)
ϕ(∆ + n)

+
∑
k

νzk−∆Γ(∆− zk)Resz=zkϕ(z)
]

= ϕ(∆) ,

(4.9)

where the only contribution to the sum comes from the n = 0 pole of the Gamma function, so

long as Re(zk −∆) > 0.6 We have shown that (4.8) holds for (4.5) if

1. Γ(∆− z)ϕ(z)→ 0 as |z| → ∞, Re(z) > c,

2. ϕ(z) has no poles in the strip Re(z) ∈ [c,Re(∆)].

A similar sequence of steps will reach an analogous conclusion for (4.6) in (4.8). Closing the

contour to the right since Γ(z −∆)→ 0 as Re(z)→ −∞ we find that (4.8) holds for (4.6) if

1. Γ(z −∆)ϕ(z)→ 0 as |z| → ∞, Re(z) < c,

2. ϕ(z) has no poles in the strip Re(z) ∈ [Re(∆), c].

6Note that if there is a zk such that zk = ∆+n for n ∈ Z then this corresponds to a double pole in Γ(∆−z)ϕ(z)

rather than two single poles. This will modify the residue formula but so long as conditions 1. and 2. hold they

are damped in the ν → 0 limit.
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We conclude this section with a word of caution about evaluating the regulated distribu-

tions (4.5) or (4.6) at Re(∆ − z) = 0 as ν → 0 and expecting to get a Dirac delta function in

Im(∆− z). Letting ∆− z = iy and k = −logν, (4.5) and (4.6) become

δν,≷(i(∆− z)) =
1

2π
e±ikyΓ(±iy) , (4.10)

and lim ν → 0 corresponds to lim k → ∞. This behaves as a distribution in y as follows. Over

the (infinitesimal as k → ∞) window [y − π
2k
, y + π

2k
] the phase e±iky switches sign. So long

as Γ(±iy)ϕ(∆ ∓ iy) is slowly varying in y the contribution of this window to (4.4) vanishes.

Meanwhile, for generic ϕ this condition precisely breaks down near y = 0 where the Gamma

function has a pole and

δν,≷(i(∆− z)) ∼ ± 1

2πiy
(cos ky ± i sin ky) . (4.11)

The k →∞ limit of the imaginary part of this expression, while divergent as y → 0, is still odd

in y and its contribution to (4.4) will also average to zero over a small window centered at y = 0.

The real part of (4.11) is a familiar representation of the Dirac delta function with non-trivial

support at y = 0 but multiplied by 1
2
. How did we get 1

2
δ(y)? What we have really been doing

is taking the c→ Re(∆) limit of (4.5) on the c < Re(∆) contour (or of (4.6) on the c > Re(∆)

contour). In doing so the n = 0 pole of the Gamma function now lies on the integration contour.

To insure (4.8) still holds, for (4.5) the c → Re(∆)− contour would need to be deformed by a

small arc leaving the pole at z = ∆ to the right of the contour, while for (4.6) the c→ Re(∆)+

contour would need to be deformed by a small arc leaving the pole at z = ∆ to the left.

As a final remark, it is worth noting that while the choice of regularizations in (4.5) and (4.6)

may seem somewhat arbitrary, they actually naturally appear as the iε regularization of space-

time singularities in our wavefunctions (3.5). Indeed, in the inner product computation in ap-

pendix A we actually see the integrand in (4.5), with ν replaced by 2εq0, appearing in (A.7)

before taking the ε → 0 limit. We can thus expect any analysis involving admixtures of in

and out states – as necessary when examining electromagnetic and gravitational memory in the

conformal basis [19,44] – to take these regularizations as physical.

4.2 Conformal Primaries with Analytically Continued ∆

Building on the results of the previous section we now show that conformal primary wavefunctions

with general conformal dimensions can be expressed as a superposition of wavefunctions on the

principal continuous series of the Lorentz group. This result follows after realizing that the

conformal primaries (3.6) and (3.14) satisfy the conditions 1. and 2. on ϕ(z) discussed in
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section (4.1) for the c ≷ Re(∆) contours with c = 1. We can thus substitute Az,±µ;a and hz,±µ;a for

ϕ(z) in (4.8) and deform the principal series contour.7

Conformal primaries with with conformal dimension lying to the right of the principal series

Re(∆) > 1 can be expressed as

A∆,±
µ;a (Xµ;w, w̄) = lim

ν→0

1

2πi

∫ 1+i∞

1−i∞
dz νz−∆Γ(∆− z)Az,±µ;a (Xµ;w, w̄) ,

h∆,±
µν;a(X

µ;w, w̄) = lim
ν→0

1

2πi

∫ 1+i∞

1−i∞
dz νz−∆Γ(∆− z)hz,±µν;a(X

µ;w, w̄) .

(4.12)

To verify this, note that the z-dependence of the integrand for either spin takes the form(
ν

−q ·X±

)z
Γ(∆− z)→ 0 , Re(z)→ +∞ . (4.13)

Applying the results of section 4.1 we close the contour to the right of the principal continuous

series, picking up the residues of the poles of the Gamma function at z = ∆+n for n = {0, 1, 2, . . .}
while there are no poles in our corresponding ϕ(z) to worry about. Using

∞∑
n=0

y∆+n (−1)n

Γ(n+ 1)
= e−yy∆, (4.14)

we arrive at

lim
ν→0

ν−∆ exp

[
−
(

ν

−q ·X±

)](
ν

−q ·X±

)∆

=
1

(−q ·X±)∆
, (4.15)

thus validating (4.12). An analogous line of arguments holds for the shadow primaries (3.13)

and (3.20) for Re(∆̃) > 1 with the same contour.

Conformal primary wavefunctions with conformal dimension lying to the left of the principal

series Re(∆) < 1 can be expressed as

A∆,±
µ;a (Xµ;w, w̄) = lim

ν→0

1

2πi

∫ 1+i∞

1−i∞
dz ν∆−zΓ(z −∆)Az,±µ;a (Xµ;w, w̄) ,

h∆,±
µν;a(X

µ;w, w̄) = lim
ν→0

1

2πi

∫ 1+i∞

1−i∞
dz ν∆−zΓ(z −∆)hz,±µν;a(X

µ;w, w̄) .

(4.16)

In this case,

(ν(−q ·X ∓ iε))−z Γ(z −∆)→ 0 , Re(z)→ −∞ , (4.17)

7This is somewhat reminiscent of the contour deformations employed in the CFT literature to translate between

conformal partial waves on the principal series and conformal blocks. While the integration kernel in (4.12)

and (4.16) may be non-standard, its asymptotic behavior gives the desired convergence of the deformed principal

series contour for which we recover conformally soft Goldstone modes with integer conformal dimension. Moreover,

the regulators in (4.5) and (4.6) are natural given the comments at the end of section 4.1.
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(a) Contour deformation for Re(∆) > 1. (b) Contour deformation for Re(∆) < 1.

Figure 2 – Conformal primaries with general conformal dimension ∆ can be expressed as integrals

along the principal series contour z = 1 + iλ with λ ∈ R. Depending on whether Re(∆) ≷ 1 the

contour is deformed to the right (2a) or left (2b). For illustration we have drawn the pole positions

corresponding to ∆ = 2 and ∆ = 0 in (2a) and (2b), respectively. Using (3.13) and (3.20), we

see the same contours are relevant for the shadow modes with ∆̃ = 2 and ∆̃ = 0, respectively.

and we thus close the contour to the left picking up the residues of the poles of the Gamma

function at z = ∆ − n for n = {0, 1, 2, . . .} while there are again no poles in the corresponding

ϕ(z). We get a sum of the form

∞∑
n=0

y−∆+n (−1)n

Γ(n+ 1)
= e−yy−∆ , (4.18)

and so

lim
ν→0

ν∆ exp [−ν(−q ·X±)] (ν(−q ·X±))−∆ =
1

(−q ·X±)∆
, (4.19)

validating (4.16). The same arguments can be repeated for the shadow primaries (3.13) and (3.20)

for Re(∆̃) < 1.

We have thus shown that conformal primary wavefunctions (3.6) and (3.14) (and their shad-

ows (3.13) and (3.20)) with arbitrary conformal dimension can be expanded in terms of conformal

primaries on the principal series.

4.3 Inner Product

We are now ready to discuss the inner product for conformal primary wavefunctions with arbi-

trary conformal dimension ∆. Relegating the explicit computations to Appendix A, we reach
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the following results.8 The inner product (3.21) between two spin-one primaries (3.6) is

(A∆,±
a (w), A∆′,±

a′ (w′))Σ = ±2(2π)4e±iπ∆ sin(∆π)
(∆− 1)

π∆(∆− 2)
δaa′δ

(2)(w − w′)δ(i(∆ + ∆′∗ − 2)) .

(4.20)

For spin-two primaries defined in (3.14) the inner product (3.22) is

(h∆,±
a (w), h∆′,±

a′ (w′))Σ = ±(2π)4e±iπ∆ sin(∆π)
(∆− 1 + i)(∆− 1− i)
π∆(∆− 1)(∆− 2)

δaa′δ
(2)(w−w′)δ(i(∆+∆′∗−2)) .

(4.21)

As demonstrated in appendix A these expressions hold regardless of whether the Cauchy slice

Σ is a constant X0 slice or taken to null infinity. The sin(π∆) appearing in the inner products

introduces zeros for integer ∆ except where cancelling poles appear, i.e. ∆ = {0, 2} for spin-one,

and ∆ = {0, 1, 2} for spin-two.

While orthogonality holds on the principal continuous series [16], the discussion in section 4.1

and 4.2 highlights that we should not take the appearance of the distribution (4.3) in (4.20)-

(4.21) as an orthogonality condition that pairs modes of weight ∆ with modes of weight 2−∆∗

for arbitrary ∆ ∈ C. Indeed, the regulated distributions (4.5)-(4.6) generically give a non-zero

inner product between any two {∆,∆′} ∈ C. Moreover, it makes sense that the inner product

between two such wavefunctions would generically be non-trivial since they can each be viewed

as a wavepacket of principal series wavefunctions. One should keep this caveat in mind when

interpreting the ‘pairings’ in [34] of spin-two modes away from the principal series with dimensions

zero and two. Besides its relevance for the subleading soft graviton mode which we examine in

section 5.3, this observation is also important for further subleading soft modes corresponding

to subleading soft photon and sub-subleading soft graviton modes [22, 24] as will be addressed

in [45].

4.4 Mode Expansion

Now that we understand that conformal primary wavefunctions with arbitrary conformal di-

mensions can be expressed as a superposition of wavefunctions with ∆ ∈ 1 + iR, it is natural to

expand general fields purely on the principal continuous series of the Lorentz group. An arbitrary

8Note that the pairings between the ∆ = 1 Goldstone modes of gauge theory and gravity and their respective

canonical partners constructed in [19], namely the conformally soft photon and graviton, are not captured by the

righthand side of (4.20) and (4.21). They can be readily obtained though from the combination of incoming and

outgoing wavefunctions discussed in [19] using the regulated versions (4.5) - (4.6) of the distribution (4.3).
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gauge field perturbation is given by9

Aµ(X) =

∫
d2w

∑
b=w,w̄

∫ 1+i∞

1−i∞
(−id∆)

[
N+

1,2−∆A
2−∆,+
µ;b∗ (Xµ;w, w̄)a1,b(∆;w, w̄)

+N−1,∆A
∆,−
µ;b (Xµ;w, w̄)a1,b(∆;w, w̄)†

]
,

(4.22)

and an arbitrary metric perturbation is given by

hµν(X) =

∫
d2w

∑
b=w,w̄

∫ 1+i∞

1−i∞
(−id∆)

[
N+

2,2−∆h
2−∆,+
µν;b∗ (Xµ;w, w̄)a2,b(∆;w, w̄)

+N−2,∆h
∆,−
µν;b(X

µ;w, w̄)a2,b(∆;w, w̄)†
]
.

(4.23)

Here we have introduced the normalization factors

N±1,∆ =

[
2(2π)4e±iπ∆ sin(∆π)

(∆− 1)

π∆(∆− 2)

]−1/2

, (4.24)

and

N±2,∆ =

[
(2π)4e±iπ∆ sin(∆π)

(∆− 1 + i)(∆− 1− i)
π∆(∆− 1)(∆− 2)

]−1/2

, (4.25)

so that the creation and annihilation operators with spin j = {1, 2} obey the commutation

relations

[aj,a(∆, w, w̄), aj,a′(∆
′, w′, w̄′)†] = δaa′δ

(2)(w − w′)δ(i(∆ + ∆′∗ − 2)) , (4.26)

where we have used N±j,2−∆ = N∓j,∆. On the principal continuous series, where ∆ = 1 + iλ,

∆′ = 1 + iλ′ with λ, λ′ ∈ R, this reduces to the standard Dirac delta function δ(λ− λ′).

4.5 Analytically Continued Quantum Modes

Let us now define the following operators10

Q∆
1,a(w, w̄) ≡ i(A,A∆∗,+

a∗ (w, w̄))Σ , Q∆
2,a(w, w̄) ≡ i(h, h∆∗,+

a∗ (w, w̄))Σ . (4.27)

Using the mode expansions (4.22)-(4.23), the results for the inner products (4.20)-(4.21), and

the relation (4.4), these reduce to

Q∆
1,a = i(N−1,∆)−1a1,a(∆;w, w̄) , Q∆

2,a = i(N−2,∆)−1a2,a(∆;w, w̄) . (4.28)

9Subtleties involving zero modes were examined by two of us and Strominger in [19]. Memory effects, discussed

there for ∆ = 1 conformally soft modes, involve admixtures of incoming and outgoing modes. A proper treatment

of those in the mode expansions (4.22) and (4.23) goes beyond the scope of this paper; we will return to it in [44].
10Note that conformal primaries with analytically continued conformal dimension away from ∆ ∈ 1+ iR do not

obey the standard fall-off conditions near null infinity. The associated operators (4.27) are divergent and need to

be renormalized. In section 5 we will outline this for the conformally soft gravitons h0 and h̃2.
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These operators shift11 the gauge field as

[Q∆
1,a(w, w̄), Aµ(X)] = iA∆,−

µ;a (Xµ;w, w̄) , (4.29)

and the metric as

[Q∆
2,a(w, w̄), hµν(X)] = ih∆,−

µν;a(X
µ;w, w̄) . (4.30)

In particular, this implies that acting with these operators on the vacuum produces single particle

states with conformal primary wavefunctions of dimension ∆:

〈0|Q∆
1,a(w, w̄)Aµ(X)|0〉 = iA∆,−

µ;a (Xµ;w, w̄), (4.31)

and

〈0|Q∆
2,a(w, w̄)hµν(X)|0〉 = ih∆,−

µν;a(X
µ;w, w̄). (4.32)

The notation for the operators Q∆
j,a is intended to be suggestive. In the following section, we will

show how for certain values of ∆ for which the conformal primary is pure gauge, the operators

Q∆
j,a correspond to soft charges in the full (matter-coupled) theory when we take the Cauchy slice

Σ to future null infinity I+.12

5 Asymptotic Symmetries

Soft theorems in gauge theory and gravity imply Ward identities for corresponding asymptotic

symmetries [3]. Whenever there is a gauge transformation that obeys some boundary conditions

but acts non-trivially at the boundary, one can use the canonical formalism [41,43] to construct

a non-zero charge associated to it. When Stokes’ theorem is used to express this charge as an

integral along null infinity, the part of the charge linear in the fields is referred to as the soft

charge [3]. While the soft theorem/Ward identity connection becomes nontrivial only in the full

(coupled) theory, the inner product of an arbitrary field perturbation with a Goldstone mode

is enough to identify the soft part of the charge. Indeed the soft charge is the operator which

generates an inhomogeneous shift of the gauge field tangent to the asymptotic symmetry.

It is thus natural to try to map any residual gauge transformations to soft charges. In [16]

it was shown that for certain values of the conformal dimension the conformal primary wave-

functions A∆ and h∆, defined in (3.6) and (3.14), and their respective shadows Ã2−∆ and h̃2−∆,

defined in (3.13) and (3.20), reduce to pure gauge or diffeomorphism modes. By inspecting their

large r behavior near null infinity, these can be seen to correspond to Goldstone modes of spon-

taneously broken asymptotic symmetries of gauge theory and gravity. This is summarized in

table 1.

11Here we have used (4.4), N±j,2−∆ = N∓j,∆ and the fact that on the principal continuous series ∆∗ = 2−∆.
12For past null infinity, the soft part of the charge transforming the in state will be related to particular (Q∆

j,a)†.
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A∆
µ h∆

µν

∆ 1 1 0

symmetry large U(1) supertranslation shadow superrotation ∈ Diff(S2)

Table 1 – Goldstone modes of spontaneously broken asymptotic symmetries of gauge theory and

gravity. The corresponding shadow modes Ã∆̃=2−∆
µ and h̃∆̃=2−∆

µν are also pure gauge. While A∆=1
µ

and h∆=1
µν are their own shadows, the shadow of h∆=0

µν is the superrotation mode h̃∆̃=2
µν .

In the following sections we will show that we can identify soft charges in gauge theory

and gravity with the operators Q∆
j,a defined in section 4.5, which by (4.29)-(4.30) generate an

inhomogeneous shift in the gauge field or metric by the Goldstone modes of table 1. For the

leading soft theorems, the computations in sections 5.1 and 5.2 will essentially be a review of

results in [19], involving the Goldstone modes A1
µ = Ã1

µ and h1
µν = h̃1

µν , to which we add that

now we can interpret these charges in terms of conformal primary creation operators by equating

the corresponding charges to Q∆
j,a for spin j = 1, 2 and ∆ = 1 and then using (4.28).

The subleading soft graviton case, which we address in section 5.3, is more subtle. It turns out

that there are two Goldstone modes, h∆=0
µν and h̃∆̃=2

µν , which are related by a shadow transform.

Certain aspects of these modes have already been studied in [19] and [34], but the results of

section 4 add an important insight: the subleading soft graviton can be viewed either as an

analytic continuation away from the principal series or as a superposition of radiative (on the

principal series) modes. Unlike the leading soft graviton, these analytically continued modes are

not each canonically paired with only a single other mode as is clear from (4.21) thus generalizing

the result of [34]. Our main focus in section 5.3 will be the identification of these two Goldstone

modes with the generators of celestial conformal symmetry. A crucial point is that previous

treatments of the superrotation vector field associated with the Virasoro asymptotic symmetry

group have dropped contact terms which are radially divergent and modify the round metric of the

celestial sphere at isolated points. This is reminiscent of the action of general diffeomorphisms

on the celestial sphere which have been proposed as a distinct extension of the original BMS

group. Here, we will show that the superrotation primary h̃2 and the Diff(S2) primary h0, which

we refer to as a shadow superrotation, appear on equal footing in a careful treatment of contact

terms. We evaluate the operator Q∆
j=2,a and its shadow for ∆̃ = 2 and ∆ = 0, interpret them

in terms of the soft part of the superrotation and Diff(S2) charges [3, 29, 31, 35] after a suitable

renormalization procedure, and discuss their relation to the 2D stress tensor and its shadow.
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5.1 Large U(1) Kac-Moody Symmetry

For conformal dimension ∆ = 1 = ∆̃ the spin-one conformal primary (3.6) and its shadow (3.13)

degenerate to the same Goldstone mode

A1,±
µ;a = ∂µα

1
a = Ã1,±

µ;a , (5.1)

with

α1,±
a = −∂alog(−q ·X±) . (5.2)

At future null infinity I+ the angular components of the Goldstone mode A1,±
µ;a for positive helicity

(a = w) takes the form

A1
z;w = − 1

(z − w)2
, A1

z̄;w = 2πδ(2)(z − w) , (5.3)

where we dropped the ± label since the there no longer is a branch cut. The temporal and

radial components of the gauge field near null infinity behave, respectively, as A1
u;w ∼ O(1/r)

and A1
r;w ∼ O(1/r2). Hence, A1

µ;w obeys the standard fall-off conditions13 and obviously has a

vanishing field strength. We recognize the angular expressions (5.3) as the Goldstone modes of

spontaneously broken large U(1) gauge symmetry

A1
z;w = ∂zεw , A1

z̄;w = ∂z̄εw , (5.4)

where the large gauge parameter εw is the boundary value of α1
w on I+

εw =
1

z − w
. (5.5)

Evaluating (4.27) for ∆ = 1 and a = w we find14

Q1
1,w ≡ i(A,A∆=1

w̄ )I+ = −
∫
dud2z

(
A1
z;wF

(0)
uz̄ + A1

z̄;wF
(0)
uz

)
. (5.6)

Comparing this with the definition for the soft charge for the corresponding asymptotic U(1)

Kac-Moody symmetry [3, 46]

Qsoft
ε = − 1

e2

∫
dud2z (∂zε F

(0)
uz̄ + ∂z̄ε F

(0)
uz ) , (5.7)

we find (after reinstating the factor 1/e2 in the definition of the charge operator)

Q1
1,w = Qsoft

ε [εw = 1
z−w ] . (5.8)

13One indeed usually (see e.g. [3]) takes the fall-offs Au ∼ O(1/r), Az ∼ O(1), Az̄ ∼ O(1).
14The superscript (n) denotes the order 1

rn at which the fields appear in the large r expansion.
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5.2 BMS Supertranslation Symmetry

Supertranslations are generated by arbitrary functions on the sphere f = f(z, z̄) and take the

form (see e.g. [3])

ζf = f∂u +
1

2
D2f∂r −

1

r
DAf∂A + . . . , (5.9)

where sphere indices A = (z, z̄) are raised and lowered with the round sphere metric γAB and

its inverse, while DA and D2 = DAD
A denote, respectively, the covariant derivative and the

Laplacian with respect to γAB. The action of supertranslations (5.9) on the free gravitational

data CAB defined by gAB = r2γAB + rCAB + . . . is

δfCAB = f∂uCAB − 2DADBf + γABD
2f . (5.10)

In [19] it was shown that the inhomogeneous part of the transformation (5.10),

δshift
f CAB ≡ −2DADBf + γABD

2f , (5.11)

is generated by spin-two conformal primaries with dimension ∆ = 1 = ∆̃, where the conformal

primaries and their shadows again degenerate to the same Goldstone mode

h1,±
µν;a = ∇µζ

1,±
ν;a +∇νζ

1,±
µ;a = h̃1,±

µν;a , (5.12)

with diffeomorphism vector

ζ1,±
µ;a = −1

8
∂2
a[qµlog(−q ·X±)] . (5.13)

Near future null infinity I+, the vector field ηµνζ1,±
ν;a ∂µ becomes the generator of supertrans-

lations (5.9) with supertranslation parameter for positive helicity a = ww given by

fww = −1

4

(z̄ − w̄)

(z − w)(1 + zz̄)
. (5.14)

The leading components of the metric no longer have a branch cut that we have to regulate and

so we will drop the ± label in the following. In terms of (5.14), the gravitational data given by

the angular component of the Goldstone mode (5.12) for positive helicity a = ww,

C1
zz;ww =

(z̄ − w̄)

(z − w)3(1 + zz̄)
, C1

z̄z̄;ww =
πδ(2)(z − w)

(1 + zz̄)
, (5.15)

can be written as

C1
zz;ww = −2D2

zfww , C1
z̄z̄;ww = −2D2

z̄fww . (5.16)

This corresponds precisely to a pure shift (5.11) induced by large diffeomorphisms on I+.

Hence (5.12) is the Goldstone mode of spontaneously broken BMS supertranslation symme-

try. The remaining metric components obey the standard fall-off conditions15 and the Bondi

news tensor defined as N1
AB;ww = ∂uC

1
AB;ww vanishes.

15Usually, one fixes Bondi gauge and demands the fall-offs huu ∼ O(1/r), hur ∼ O(1/r2), huz ∼ O(1),

huz̄ ∼ O(1), hzz ∼ O(r), hzz̄ ∼ O(1), hz̄z̄ ∼ O(r).
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Evaluating Q1
2,ww gives

Q1
2,ww ≡ i(h, h∆=1

w̄w̄ )I+ = −
∫
dud2z

√
γ
(
C1
zz;wwN

zz + C1
z̄z̄;wwN

z̄z̄
)
. (5.17)

Comparing this with the definition for the soft charge for the corresponding supertranslation

symmetry [3, 47]

Qsoft
f = − 1

16πG

∫
dud2z

√
γ (D2

zfN
zz +D2

z̄fN
z̄z̄), (5.18)

we find (after reinstating the factor 1/(16πG) in the definition of the charge operator)

Q1
2,ww = Qsoft

f [fww = −1
4

(z−w)
(z̄−w̄)(1+zz̄)

] . (5.19)

5.3 Superrotation and Diff(S2) Symmetry

Besides the ∆ = 1 Goldstone modes for gauge theory and gravity, for spin-two there exist addi-

tional Goldstone modes away from the principal series. These are spin-two conformal primaries

with conformal dimension ∆ = 0

h0,±
µν;a = ∇µξ

0,±
ν;a +∇νξ

0,±
µ;a with ξ0,±

µ;a = −1

4
(−q ·X±) ∂a[qµ∂alog(−q ·X±)] , (5.20)

and shadow dimension ∆̃ = 2−∆ = 2 ,

h̃2,±
µν;a = ∇µξ

2,±
ν;a +∇νξ

2,±
µ;a with ξ2,±

µ;a = − 1

24
∂3
a[X

ρ
±(qρ∂āqµ − qµ∂āqρ)log(−q ·X±)] , (5.21)

which are related by the shadow transform (3.20) as

h̃0,±
µν;ā = (−X2

±)h2,±
µν;a ≡ h̃2,±

µν;a . (5.22)

The vector fields in (5.20) and (5.21)16 both satisfy the condition 2ξ=0 and are related by [18]

∂āξ
2,±
µ;a = −1

6
∂3
aξ

0,±
µ;ā . (5.23)

We will show below that these correspond to particular Diff(S2) vector fields parameterized by

the leading data in (5.30) and (5.36).

In harmonic gauge, diffeomorphisms of the celestial sphere are generated by the vector field

ξY = uα∂u −
(
αr + u

(
D2

2
+ 2

)
α

)
∂r +

(
Y A +

u

2r
((D2 + 1)Y A − 2DAα)

)
∂A + . . . , (5.24)

16They should not be confused with the vector field ζ∆ defined in (3.14). E.g. ζ∆=0 is related to the vector

field in (5.20) via ξ0
ν;a = ζ0

ν;a − 1
4∂aqν(∂aq ·X).
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where Y A = Y A(z, z̄) is an arbitrary vector field on the sphere and we have introduced

α ≡ 1
2
DCY

C . A detailed derivation of the form (5.24) is presented in Appendix B where we

discuss various subtleties that arise when Y A is not a conformal Killing vector on the sphere,

as well as the appearance of logarithmic terms at subleading orders, which are necessary for

the diffeomorphism (5.24) to satisfy the harmonic gauge condition.17 It is important to notice

that Diff(S2) vector fields are over-leading, in the sense that they modify the metric of the ce-

lestial sphere. Indeed, the action of the Lie derivative along (5.24) on a metric of the form

gAB = r2γAB + rCAB + . . . is given by

δY γAB = DAYB +DBYA − 2αγAB ,

δYCAB = (αu∂u + LY − α)CAB − 2uDADBα + uDA(D2 + 1)YB.
(5.25)

At this point, an important comment is in order. The first proposed extension of the BMS group

in the literature [8,10–12] considered superrotations which are local conformal Killing vectors that

enhance the Lorentz group to two copies of the Virasoro algebra. The surface charges associated

to superrotations as well as their algebra were derived in [35] (see also [52, 53]). Because they

violate the CKV condition DAYB + DBYA = 2αγAB locally, these meromorphic superrotations

change the celestial sphere metric by adding singularities at isolated points. This was physically

interpreted in [54] as due to cosmic strings piercing null infinity. As we will see in the following,

keeping careful track of these singular terms puts Virasoro on equal footing with Diff(S2) as far

as their Ward identities are concerned. Indeed, the ∆ = 0 and ∆̃ = 2 Goldstone primaries (5.20)

and (5.21) which we will in the following relate to Diff(S2) and Virasoro symmetry, respectively,

are related by a shadow transform, and so are their corresponding soft charges.

The action on the news tensor NAB = ∂uCAB can be read from (5.25):

δYNAB = (αu∂u + LY )NAB − 2DADBα +DA(D2 + 1)YB . (5.26)

The inhomogeneous parts of the transformations above induce the following shift on the metric

functions:
δshift
Y γAB ≡ DAYB +DBYA ,

δshift
Y CAB ≡ −2uDADBα + uDA(D2 + 1)YB ,

δshift
Y NAB ≡ −2DADBα +DA(D2 + 1)YB .

(5.27)

We will now show that the primaries (5.21) and (5.20) are the harmonic gauge diffeomorphisms

of the celestial sphere which generate pure shift transformations (5.27) for given Y A = Y A(z, z̄).

Finally, we will compute the operator (4.27) for both Goldstone modes and identify it with the

soft part of the canonical charge for superrotation and Diff(S2) symmetry.

17See references [48–51] for other analyses of residual gauge transformations in harmonic gauge.
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5.3.1 ∆̃ = 2 Goldstone Mode

We begin by quoting the gravitational data for the ∆̃ = 2 Goldstone mode (5.21) for positive

helicity a = ww

C̃2
zz;ww =

u

(z − w)4
, (5.28)

which implies the Bondi news tensor Ñ2
zz;ww = ∂uC̃

2
zz;ww,

Ñ2
zz;ww =

1

(z − w)4
. (5.29)

The news is conformally soft as defined in [19] as it transforms as a primary with conformal

weights (h, h̄) = (2, 0) under an SL(2,C) transformation. It moreover has the form of a pure

(meromorphic) superrotation; indeed, near future null infinity I+, the vector field ξ2µ
a ∂µ for

a = ww matches the expansion of (5.24) with

Y z
ww =

1

6(z − w)
, Y z̄

ww = 0 , (5.30)

which is a (complexified) superrotation. As already pointed out in [19], the Bondi news tensor

can be expressed as

Ñ2
zz;ww = −D3

zY
z
ww , (5.31)

which is nothing but the pure shift transformation in (5.27) with Y A given by (5.30). The

superrotation vector field (5.30) violates the CKV condition at isolated points, and thus changes

the celestial sphere metric by adding singularities:

δY γz̄z̄ = LY γz̄z̄ = 2γzz̄Dz̄Y
z
ww =

2π

3
γzz̄δ

(2)(z − w). (5.32)

This inhomogeneous shift δshift
Y γz̄z̄ coincides with the leading O(r2) term in the expansion of the

primary near I+

h̃2
z̄z̄;ww = r2q̃2

z̄z̄;ww + rC̃2
z̄z̄;ww + . . . , (5.33)

while the O(r) term coincides with the inhomogeneous shift δshift
Y Cz̄z̄ in the gravitational data

C̃2
z̄z̄;ww = −uD2

z̄DzY
z
ww +uDz̄(D

2 + 1)Yz̄;ww = u
π

3
γzz̄

(
1 +

1

2

(1 + zw̄)4

(1 + ww̄)2
∂z∂z̄

)
δ(2)(z−w) . (5.34)

We thus see that the spin-two primary (5.21) is the Goldstone mode of spontaneously broken

superrotation symmetry.18

18As in [14] a generic superrotation can be constructed via a contour integral in the reference direction w.
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5.3.2 ∆ = 0 Goldstone Mode

A shadow transformation takes the positive helicity mode h̃2
µν;ww to the negative helicity mode

h0
µν;w̄w̄ with gravitational data

C0
zz;w̄w̄ = 2πuδ(2)(z − w) , C0

z̄z̄;w̄w̄ = −2u
(1 + wz̄)(1 + zw̄)

(1 + zz̄)2

(z − w)

(z̄ − w̄)3
, (5.35)

and Bondi news tensor N0
zz;w̄w̄ = ∂uC

0
zz;w̄w̄ and N0

z̄z̄;w̄w̄ = ∂uC
0
z̄z̄;w̄w̄. Near future null infinity, the

diffeomorphism ξ0µ
a ∂µ for a = w̄w̄ takes the form (5.24) with the vector field

Y z
w̄w̄ = −1

2

(z − w)2

(z̄ − w̄)
, Y z̄

w̄w̄ = 0. (5.36)

This diffeomorphism generates the shifts

N0
zz;w̄w̄ = −D3

zY
z
w̄w̄ , N0

z̄z̄;w̄w̄ = γzz̄Dz̄(D
2 + 1)Y z

w̄w̄ −D2
z̄DzY

z
w̄w̄ , (5.37)

at O(r) while the leading O(r2) term in

h0
z̄z̄;w̄w̄ = r2q0

z̄z̄;w̄w̄ + rC0
z̄z̄;w̄w̄ + . . . , (5.38)

is generated by

LY γz̄z̄ = 2γzz̄Dz̄Y
z
w̄w̄ = γzz̄

(z − w)2

(z̄ − w̄)2
. (5.39)

Hence, the spin-two primary (5.20) is the Goldstone mode of spontaneously broken shadow

superrotation ∈ Diff(S2) symmetry. Moreover, the vector field (5.36) is the one needed in [31]

to show that the Cachazo-Strominger subleading soft graviton theorem can be obtained from a

Diff(S2) Ward identity.

5.3.3 Soft Charges for Superrotation and Diff(S2) Symmetries

The soft part of the charges associated to superrotations and shadow superrotations ∈ Diff(S2)

is obtained from the inner product (3.22) at null infinity of a generic metric perturbation h with

the Goldstone mode (5.21) or (5.20). However, because the Goldstone modes h0 and h̃2 violate

the standard Bondi fall-offs, the inner product is divergent and we need to employ a suitable

renormalization procedure that takes care of radially divergent terms. A remaining ambiguity

in defining the soft charge is fixed by demanding consistency with the subleading soft graviton

theorem. We outline these steps now.

In the language of the covariant phase space formalism (see [55] for a pedagogical review),

computing the inner product (3.22) at future null infinity amounts to computing the Iyer-Wald

symplectic structure [42, 56]

Ω[δg, δ′g; g] =

∫
I+

ω[δg, δ′g; g] , (5.40)
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for the variations δg = h, δ′g = h′ around a fixed background g and the presymplectic form is a

spacetime co-dimension one form19 given by

ωρ[δg, δ′g; g] =
√
−g(hµν∇ρh′µν − 2hµν∇µh

′ρ
ν − (h↔ h′)) . (5.41)

We are interested in computing (5.41) with the metric perturbation h′ corresponding to either of

the Goldstone modes h0
µν;w̄w̄ or h̃2

µν;ww. When computing the presymplectic form (see Appendix C

for details), we find that it contains a radially divergent piece proportional to the inhomogeneous

shift (5.27) of the celestial sphere metric. This feature was already noticed by Compère, Fiorucci

and Ruzziconi in the analysis of Diff(S2) symmetries [29] and can be expected as the latter are

over-leading symmetries in that they change the round metric of the celestial sphere.

A renormalization of the symplectic structure is therefore required in order to obtain finite

boundary charges. We will follow the procedure developed in [29], which exploits the fact that

the presymplectic form can be shifted by a boundary term, which expresses a residual ambiguity

in the definition of the presymplectic structure in the covariant phase space formalism [56]. After

renormalization, the symplectic structure is finite and we find (see Appendix C)

i(h, h′∗)renI+ = Ωren[δg, δ′g; g] ≡ −δQY , (5.42)

where

QY =

∫
dud2z

√
γ (−D3

zY
zCzz − 1

2
D2Dz̄Yz̄C

z̄z̄ + uD3
zY

zN zz − u

2
D2Dz̄Yz̄N

z̄z̄) . (5.43)

There subsists a remaining ambiguity in adding boundary terms at null infinity which can be

fixed by demanding consistency with the subleading soft graviton theorem. This amounts to

adding the boundary term20

∆QY =

∫
d2z
√
γ u (DAYB +DBDCDAY

C)CAB , (5.44)

to (5.43) and defines the soft charge

Qsoft
Y = QY +

∫
du∂u∆QY . (5.45)

For Y A = (Y z, 0), as is the case for both h̃2
µν;ww and h0

µν;w̄w̄, we have∫
du∂u∆QY =

∫
dud2z

√
γ (D3

zY
zCzz +

1

2
D2Dz̄Yz̄C

z̄z̄ + uD3
zY

zN zz +
u

2
D2Dz̄Yz̄N

z̄z̄) . (5.46)

19With the notation ω = ωρ(d3x)ρ and (d3x)ρ = 1
3!ερµνσdx

µ ∧ dxν ∧ dxσ.
20Conformal primary wavefunctions obey the harmonic and a further residual radial gauge condition which is

incompatible with the Bondi gauge fixing employed in the literature in the discussion of Diff(S2) symmetry and

soft charges. We have therefore adapted the renormalization procedure of [29] to our gauge fixing.
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This yields the final result for the soft charge associated with (shadow) superrotations:

Qsoft
Y =

1

16πG

∫
dud2z

√
γ uD3

zY
zN zz , (5.47)

with Y z = Y z(z, z̄) and we reinstated 1/(32πG) in the standard definition of the soft charge.

A few comments are in order. The expression for the soft charge (5.47) which we derived

in harmonic gauge takes the same form in Bondi gauge [28, 29, 57]. Moreover, the above coun-

terterm procedure highlights the importance of carefully keeping track of contact terms. For

superrotations generated by the Goldstone mode h̃2 with positive helicity (a = ww) we have

D3
zY

z
ww = − 1

(z − w)4
, (5.48)

while the radially divergent term in (5.40) as well as the remaining terms in (5.43) are contact

terms that get subtracted. In hindsight, this explains why previous discussions of the soft

superrotation charge got away with dropping contact terms altogether. The situation is inverted

for shadow superrotation symmetry where the final expression for the soft charge generated by

the Goldstone mode h0 with negative helicity (a = w̄w̄) involves a contact term

D3
zY

z
w̄w̄ = −2πδ(2)(z − w) , (5.49)

while the radially divergent term in (5.40) and the remaining terms in (5.43) are non-meromorphic

functions on the celestial sphere. Clearly, the renormalization procedure is needed to arrive at

a sensible soft charge. Moreover, the contact term (5.49) is what establishes the equivalence

between the Diff(S2) Ward identity and the subleading soft graviton theorem [31].

Finally, we turn to the analytically continued mode operators defined in section 4.5 and

their role in the putative celestial CFT. For the superrotation Goldstone mode h̃2 the asymp-

totic charge operator (4.27) for ∆̃ = 2 − ∆ = 2 and a = ww defined by Q̃2
2;ww ≡ i(h, h̃2

w̄w̄)I+

corresponds, after renormalization (5.44) and (5.46), to the superrotation charge (5.47)

Q̃2 ren
2,ww = Qsoft

Y [Y z
ww = 1

6(z−w)
, Y z̄

ww = 0] . (5.50)

This quantity appears as the 2D stress-tensor for 4D gravity [14,19]

Tww ≡
−6i

8πG

∫
dud2z

√
γÑ2

zz;wwuN
zz = 12i Q̃2 ren

2,ww , (5.51)

which is a weight (h, h̄) = (2, 0) operator in the putative celestial CFT.

The asymptotic charge operator (4.27) for ∆ = 0 and a = w̄w̄, defined byQ0
2;w̄w̄ ≡ i(h, h0

ww)I+ ,

corresponds after renormalization to the soft Diff(S2) charge

Q0 ren
2,w̄w̄ = Qsoft

Y [Y z
w̄w̄ = −1

2
(z−w)2

(z̄−w̄)
, Y z̄

w̄w̄ = 0] . (5.52)
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Defining the weight (h, h̄) = (−1, 1) shadow stress tensor

T̃w̄w̄ ≡
3

2π

∫
d2w′

(w − w′)2

(w̄ − w̄′)2
Tw′w′ , (5.53)

we find21

T̃w̄w̄ = 12i Q0 ren
2,w̄w̄ . (5.55)

From the point of view of a putative celestial CFT, the shadow transform thus puts superrotations

and Diff(S2) shadow superrotations on equal footing as illustrated in Figure 3.

Q̃2
2,ww Q0

2,w̄w̄

Tww T̃w̄w̄

shadow

shadow

re
n
or

m
al

iz
e

re
n
or

m
al

iz
e

Figure 3 – The shadow [58] and renormalization [29] procedures commute. The renormalized

quantities {Tww, T̃w̄w̄} correspond to soft charges appearing in [8] and [31], respectively.

This relation elucidates the correspondence between the Ward identity for the Virasoro [8] and

Diff(S2) [31] symmetries and the subleading soft graviton theorem [13] as depicted in Figure 1.

While the former corresponds to the insertion of the 2D stress tensor (5.51) into the S-matrix [14],

the latter corresponds to the insertion of the 2D shadow stress tensor (5.55). Moreover, the

relation between superrotations and the subleading soft graviton theorem becomes 1:1 when the

asymptotic Virasoro symmetry group is enhanced to include shadow superrotations. We thus

conclude that the asymptotic symmetry group of Einstein gravity at null infinity should include

the closure of Virasoro under shadows within Diff(S2). This extends to arbitrary diffeomorphisms

Y z = Y z(z, z̄) upon convolution of T̃w̄w̄ with D3
wY

w(w, w̄), integrating by parts, and using

D3
wY

z
w̄w̄ = 2πδ(2)(z − w).

21Here we used that the positive helicity Goldstone mode h̃2
zz;ww is related to the negative helicity Goldstone

mode h0
zz;w̄w̄ by a shadow transform on the celestial sphere where orders of r are not mixed, and made use of the

result of [58] that∫
d2z

2∏
i=1

1

(z − zi)hi

1

(z̄ − z̄i)h̄i
=

Γ(1− h1)Γ(1− h2)

Γ(h̄1)Γ(h̄2)
(−1)h1−h̄1(2π)2δ(2)(z1 − z2) , (5.54)

where
∑n
i=1 hi =

∑n
i=1 h̄i = 2, hi − h̄i ∈ Z. Convergence of the integral requires hi + h̄i < 2 for all i although it

may be extended by analytic continuation.
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A Inner Product

Here we evaluate the inner products (4.20) and (4.21) for two choices of Cauchy surfaces Σ, one

at constant time X0 = 0 and the other at null infinity. For appropriate boundary conditions (at

spatial infinity) one would expect the inner product to be the same for any Cauchy slice. The

computations in this appendix show that this is indeed the case.

A.1 Inner Product on X0 = 0 Cauchy Slice

Let us start by considering the X0 = 0 Cauchy slice. To effectively compute the inner products

(A,A′)Σ0 = −i
∫
dΣ0

[
Aν(∇0A

′∗
ν −∇νA

′∗
0)− (A↔ A′∗)

]
, (A.1)

and

(h, h′)Σ0 = −i
∫
dΣ0

[
hµν(∇0h

′∗
µν − 2∇µh

′∗
0ν)− (h↔ h′∗)

]
, (A.2)

between two conformal primaries it is useful to reorganize the expressions (3.6) and (3.14). Spin-

one conformal primary can be written as

A∆,±
µ;a (Xµ;w, w̄) =

[
∂aqµ +

1

∆
qµ∂a

]
1

(−q ·X±)∆
, (A.3)

and spin-two conformal primary as

h∆,±
µν;a(X

µ;w, w̄) =
1

2

[
∂aqµ∂aqν +

1

∆
(qµ∂aqν + qν∂aqµ)∂a +

1

∆(∆ + 1)
qµqν∂

2
a

]
1

(−q ·X±)∆
. (A.4)
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where we have used ∂2
aq = 0. Using the Mellin representation for the denominator appearing in

the conformal primaries (3.5) in terms of plane waves

(±i)∆

Γ(∆)

∫ ∞
0

dωω∆−1e±iωq·X−εωq
0

=
1

(−q ·X±)∆
, (A.5)

one can see that the d3X integral of the product of two such terms – parameterized by reference

directions and weights {q,∆} and {q′,∆′} – should be proportional to a delta function on the

celestial sphere δ(2)(q̂ − q̂′), where q̂ refers to the unit vector pointing in the direction of the

spatial part of q, forcing ~q and ~q′ to be parallel. Indeed

I±1 (∆,∆′∗ + 1) ≡
∫
d3X

1

(−q ·X±)∆(−q′ ·X∓)∆′∗+1

=
(2π)3(±i)∆−∆′∗−1

2Γ(∆)Γ(∆′∗ + 1)
(q0)−1δ(2)(w − w′)

∫ ∞
0

dωω∆+∆′∗−3e−2εωq0

.

(A.6)

Meanwhile, the d3X integral gives 0 if both plane waves have the same ± sign. Taking the limit

ε→ 0, one finds

lim
ε→0

∫ ∞
0

dωω∆+∆′∗−3e−2εωq0

= 2πδ(i(∆ + ∆′∗ − 2)), (A.7)

which is the distribution we defined in section 4.1.

To compute the inner products (A.1) and (A.2) for the primaries (A.3) and (A.4), respectively,

we use our above observation that we are restricted to the support of q̂ = q̂′ and fact that the

reference direction q is a null vector satisfying

q · q = q · ∂aq = 0 , (A.8)

and similarly for q′. Furthermore, we have that ∂aq ·∂a′∗q = 2δaa′ . For spin-one primaries we find

(A∆,±
a (w), A∆′,±

a′ (w′))Σ0 = −i(∆′∗ − 1)q0(∂aq · ∂a′∗q′)I±1 (∆,∆′∗ + 1)− (∆↔ ∆′∗)

= ±2(2π)4e±iπ∆ sin(∆π)
(∆− 1)

π∆(∆− 2)
δaa′δ

(2)(w − w′)

× δ(i(∆ + ∆′∗ − 2)) ,

(A.9)

while for spin-two primaries

(h∆,±
a (w), h∆′,±

a′ (w′))Σ0 = − i
4

(∆′∗ − 2)q0(∂aq · ∂a′∗q′)2I±1 (∆,∆′∗ + 1)− (∆↔ ∆′∗)

= ±(2π)4e±iπ∆ sin(∆π)
(∆− 1 + i)(∆− 1− i)
π∆(∆− 1)(∆− 2)

δaa′δ
(2)(w − w′)

× δ(i(∆ + ∆′∗ − 2)) ,

(A.10)

where we have taken the ε→ 0 limit in the final expressions and made use of ϕ(z)δ(i(∆− z)) ∼=
ϕ(∆)δ(i(∆− z)) which holds inside a contour integral of the kind (4.4) since the conditions on
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ϕ(z) of section 4.1 are satisfied here. Also note that the exchanged terms involve I±1 (∆ + 1,∆′∗)

and have the phase (±i)∆+1−∆′∗ rather than (±i)∆′∗−∆−1 due to the fact that the iε prescriptions

are fixed for each mode.

A.2 Cauchy Slice Pushed to Null Infinity

To compute the inner product at null infinity, we can repeat the above steps once we evaluate

the three-dimensional integral of two massless plane waves at future null infinity.

lim
r→∞

r2

∫
d2zdu

√
γe∓iωq·Xe±iω

′q′·X = lim
r→∞

r2

∫
d2x̂due±iωq

0(u+r(1−cos θ))e∓iω
′q′0(u+r(1−cos θ′))

= 2πδ(ωq0 − ω′q′0) lim
r→∞

r2

∫
d2x̂e±iωq

0r(1−cos θ)e∓iω
′q′0r(1−cos θ′) ,

(A.11)

where cos θ = q̂ · x̂ and cos θ′ = q̂′ · x̂. Without loss of generality we can orient our axes so that

q̂′ points towards the north pole. Then using

lim
r→∞

sin θ′eiω
′q′0r(1−cos θ′) =

i

ω′q′0r
δ(θ′) +O((ωq0r)−2) , (A.12)

twice we have

lim
r→∞

r2

∫
d2zdu

√
γe∓iωq·Xe±iω

′q′·X = 2πδ(ωq0 − ω′q′0) lim
r→∞

r2[
∓2πi

ωq0r
e±iωq

0r(1−q̂·q̂′) +O((ωq0r)−2)]

= (2π)3δ(ωq0 − ω′q′0)(ωq0)−2δ(2)(q̂ − q̂′)
= (2π)3δ(3)(ω~q − ω′~q′) .

(A.13)

Again we have used the notation q̂ to refer to the unit vector pointing in the direction of the

spatial part of q. Since this agrees with the plane wave integral computed on the X0 = 0 slice,

we get the same result for I±1 (∆,∆′∗ + 1) in (A.6).

The reasoning in Appendix A.1 continues to hold except we must use q · n in place of q0.

Now nµ∂µ = ∂u − 1
2
∂r, so at the point near future null infinity parameterized by {u, r, z, z̄} we

have qu = q0 = −(1 + ww̄) and qr = −2|z−w|2
1+zz̄

. Because of the z dependence of qr, unlike in the

spatial case, any qr term modifies the Cauchy slice integrand. However, since we saw above that

the Cauchy slice integral localizes to z = w any term with qr or ∂aqr will vanish. We thus find

that our answer at future null infinity is the same as our computation at the X0 = 0 slice.
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B Harmonic Diff(S2) Vector Field

In this appendix we derive the vector field ξ that generates arbitrary diffeomorphisms of the

celestial sphere in harmonic gauge where

2ξµ(u, r, z, z̄) = 0 . (B.1)

Our ansatz for the radial expansion of the vector field is22

ξµ(u, r, z, z̄) =
∑
n

r−n(ξ(n)
µ (u, z, z̄) + log(r) ξ̃(n)

µ (u, z, z̄)) , (B.2)

which, after a similar decomposition of (B.1) into powers of r−n yields [50]

[�ξu]
(n) = 2(n− 2)∂uξ

(n−1)
u +

[
D2 + (n− 2)(n− 3)

]
ξ(n−2)
u

+ (5− 2n)ξ̃(n−2)
u − 2∂uξ̃

(n−1)
u ,

[�ξr]
(n) = 2(n− 2)∂uξ

(n−1)
r +

[
D2 + (n− 2)(n− 3)− 2

]
ξ(n−2)
r + 2ξ(n−2)

u − 2DAξ
(n−3)
A

+ (5− 2n)ξ̃(n−2)
r − 2∂uξ̃

(n−1)
r ,

[�ξA](n−1) = 2(n− 2)∂uξ
(n−2)
A +

[
D2 + (n− 2)(n− 3)− 1

]
ξ

(n−3)
A − 2∂A

(
ξ(n−2)
u − ξ(n−2)

r

)
+ (5− 2n)ξ̃

(n−3)
A − 2∂uξ̃

(n−2)
A ,

(B.3)

and at logarithmic order

[�ξ̃u]
(n) = 2(n− 2)∂uξ̃

(n−1)
u +

[
D2 + (n− 2)(n− 3)

]
ξ̃(n−2)
u ,

[�ξ̃r]
(n) = 2(n− 2)∂uξ̃

(n−1)
r +

[
D2 + (n− 2)(n− 3)− 2

]
ξ̃(n−2)
r + 2ξ̃(n−2)

u − 2DAξ̃
(n−3)
A ,

[�ξ̃A](n−1) = 2(n− 2)∂uξ̃
(n−2)
A +

[
D2 + (n− 2)(n− 3)− 1

]
ξ̃

(n−3)
A − 2∂A

(
ξ̃(n−2)
u − ξ̃(n−2)

r

)
.

(B.4)

Unlike in [50], we use a radial gauge condition to perform our residual gauge fixing. This takes

the form

Vν ≡ Xµ(∇µξν +∇νξµ) = 0 , (B.5)

which decomposes into

V (n)
u = −2u∂uξ

u(n) − 2u∂uξ
r(n) − ∂uξu(n+1) + nξu(n) + nξr(n) − ξ̃u(n) − ξ̃r(n) ,

V (n)
r = −u∂uξu(n) + (n− 1)uξu(n−1) + (n− 1)uξr(n−1) − uξ̃u(n−1) − uξ̃r(n−1) + 2nξu(n) − 2ξ̃u(n) ,

V
(n−1)
A = γABu∂uξ

B(n+1) − u∂Aξu(n−1) − u∂Aξr(n−1) − ∂Aξu(n) − (n+ 1)γABξ
B(n+1) + γAB ξ̃

B(n+1) ,

(B.6)

22Here ∼ denotes logarithmic terms in the expansion and is unrelated to the ∼ we use for the shadow transform.

For now, we will let n range over all integers, but boundary conditions will demand that the coefficients {ξ(n)
µ , ξ̃

(n)
µ }

are non-zero only for a semi-infinite range extending to n → +∞. The harmonic and residual gauge fixing

conditions provide restrictions on the leading data.
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and for the logarithmic terms into

Ṽ (n)
u = −2u∂uξ̃

u(n) − 2u∂uξ̃
r(n) − ∂uξ̃u(n+1) + nξ̃u(n) + nξ̃r(n) ,

Ṽ (n)
r = −u∂uξ̃u(−1) − 2uξ̃u(−2) − 2uξ̃r(−2) + 2nξ̃u(−1) ,

Ṽ
(n−1)
A = γABu∂uξ̃

B(n+1) − u∂Aξ̃u(n−1) − u∂Aξ̃r(n−1) − ∂Aξ̃u(n) − (n+ 1)γAB ξ̃
B(n+1) .

(B.7)

We use ξu = −ξr, ξr = ξr − ξu to combine the above expressions involving raised vs lowered

indexed components.

In this appendix we are interested in the specific example of a Diff(S2) transformation of the

celestial sphere, i.e.

ξA(0) = Y A(z, z̄) , (B.8)

which corresponds in our notation to

ξ
(−2)
A = YA(z, z̄) . (B.9)

Even if we only cared about pure superrotations, for which Y z(z, z̄) = Y z(z), we would need the

full Diff(S2) vector field in order to keep track of contact terms.

We start by imposing the conditions

ξ̃(n≤0)
u = ξ̃(n≤0)

r = ξ̃
(n≤−1)
A = 0 , ξ

(n≤−3)
A = 0 , ξ

(−2)
A = YA(z, z̄) , (B.10)

which is reasoned as follows. The last two conditions imply a Diff(S2) on the celestial sphere,

while the first three conditions follow from consistency of the log-order equations. The first

non-zero orders allowed would be the free data of the log-equations, but are fixed by the non-log

equations.

The u-independence of Y A(z, z̄) gives

V (n≤−1)
u = (−2u∂u + n)(ξu(n) + ξr(n))− ∂uξu(n+1) ,

V (n+1≤0)
r = (−u∂u + 2n+ 2)ξu(n+1) + nu(ξu(n) + ξr(n)) ,

V
(n−1≤−2)
A = −∂A(u(ξu(n) + ξr(n)) + ξu(n+1)) .

(B.11)

Noting that ξu + ξr = −ξu, the radial gauge condition (B.11) tells us

ξ(n+1)
r = −uξ(n)

u , (B.12)

for n ≤ −1. We can then use this to replace every ξr in (B.3), in particular

[�ξA](n−1≤−1) = 2∂A
(
ξ(n−2)
u − ξ(n−2)

r

)
, (B.13)

then implies

ξ(n−2)
u = −uξ(n−3)

u , (B.14)

33



for n ≤ 0. If we want the tower to truncate we should demand

ξ(n≤−2)
u = 0 . (B.15)

We then have the leading equations

[�ξA](0) = −2∂uξ
(−1)
A +

[
D2 + 1

]
ξ

(−2)
A − 2∂Aξ

(−1)
u ,

[�ξr]
(1) = 2u∂uξ

(−1)
u + 4ξ(−1)

u − 2DAξ
(−2)
A ,

[�ξu]
(0) = −4∂uξ

(−1)
u ,

[�ξu]
(1) = −2∂uξ

(0)
u +

[
D2 + 2

]
ξ(−1)
u ,

[�ξA](1) =
[
D2 − 1

]
ξ

(−1)
A − 2∂A

(
ξ(0)
u + uξ(−1)

u

)
− 2∂uξ̃

(0)
A ,

[�ξr]
(2) = −

[
D2 − 2

]
uξ(−1)

u + 2ξ(0)
u − 2DAξ

(−1)
A − 2∂uξ̃

(1)
r ,

[�ξu]
(2) = D2ξ(0)

u − 2∂uξ̃
(1)
u .

(B.16)

The first three tell us

ξ(−1)
u =

1

2
DAYA , ξ(0)

u =
u

4

[
D2 + 2

]
DAY

A , ξ(0)
r = −u

2
DAξ

(−2)
A ,

ξ
(−2)
A = YA(z, z̄) , ξ

(−1)
A =

u

2
(
[
D2 + 1

]
YA −DADBY

B) ,
(B.17)

so that
ξA = Y A +

u

2r
(
[
D2 + 1

]
Y A −DADBY

B) + . . . ,

ξu =
u

2
DAYA + . . . ,

ξr = −r
2
DAYA −

u

4

[
D2 + 4

]
DAYA + . . . ,

(B.18)

where the omitted terms should be solved for using the radial gauge fixing recursions (B.6)-(B.7),

consistent with the harmonic condition (B.1).

Meanwhile the last three equations in (B.16) allow us solve for the leading log terms, which

are in turn free data for the log tower (B.4). Explicitly, these are

2∂uξ̃
(0)
A =

u

2
(
[
D2 − 1

] [
D2 + 1

]
YA − 2DA

[
D2 + 2

]
DBY

B) ,

2∂uξ̃
(1)
r =

u

2
(2
[
D2 + 2

]
DAYA − 2DA

[
D2 + 1

]
YA) ,

2∂uξ̃
(1)
u =

u

4
D2
[
D2 + 2

]
DAY

A .

(B.19)

Finally, we note that away from poles of meromorphic Y z(z), we have

[D2 + 1]Y A = 0 , [D2 + 2]DAY
A = 0 . (B.20)
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We thus see that all of the log terms vanish, while the vector field reduces to

ξA = Y A − u

2r
DADBY

B + . . . ,

ξu =
u

2
DAYA + . . . ,

ξr = −r
2
DAYA −

u

2
DAYA + . . . .

(B.21)

It should be emphasized, that in order to keep track of poles in Y z, as needed in section 5, we

should use the generic Diff(S2) form (B.18) which adds contact term corrections to (B.21).

C Renormalized Symplectic Structure

In this appendix, we compute the inner product at future null infinity for the conformal primary

Goldstone modes with conformal dimension ∆ = 0 and ∆̃ = 2. This amounts to computing the

Iyer-Wald symplectic structure [42,56]

Ω[δg, δ′g; g] =

∫
I+

ω[δg, δ′g; g] , (C.1)

for the variations h = δg, h′ = δ′g around a fixed background g, where the presymplectic form

ω = ωρ(d3x)ρ is given by

ωρ[δg, δ′g; g] = r2√γ(hµν∇ρh′µν − 2hµν∇µh
′ρ
ν − (h↔ h′)) . (C.2)

We want to compute (C.2) for h′µν = h0
µν;w̄w̄ and h′µν = h̃2

µν;ww, both of which behave near future

null infinity as23

h′uu = O(r0) , h′uz = O(r0) , h′uz̄ = rδ′g
(−1)
uz̄ +O(r0) ,

h′zz = rδ′Czz +O(r0) , h′zz̄ = rδ′Czz̄ +O(r0) , h′z̄z̄ = r2δ′γz̄z̄ + rδ′Cz̄z̄ +O(r0) ,
(C.3)

where the variations δ′CAB depend on (u, z, z̄), while δ′g
(−1)
uz̄ and δ′γz̄z̄ only depend on the angles.

We assume the following fall-offs for the perturbation hµν = δgµν :

huu = δg(0)
uu +O(r−1) , huA = δg

(0)
uA +O(r−1) , hAB = rδCAB +O(r0), (C.4)

with δCzz̄ = 0 and all variations are functions of (u, z, z̄). The leading behavior of the radial

metric components in both (C.3) and (C.4) is determined by the radial gauge condition

hrµ = −u
r
huµ . (C.5)

23The superscript (n) denotes the coefficient of the 1/rn term in the expansion near null infinity.
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Evaluating (C.2) for these fall-offs, we find:

ωu = −√γδ′γz̄z̄δC z̄z̄ +O(r−1),

ωr = r
√
γδ′γz̄z̄δN

z̄z̄ + ωr(0) +O(r−1),
(C.6)

with NAB = ∂uCAB and

ωr(0) =
√
γ
(
δ′CABδN

AB − δCABδ′NAB + δ′γzz(2Dzδg
(0)
uz − ∂uδg(0)

zz )

+ 2Dz̄δ
′g

(−1)
uz̄ δC z̄z̄ − 2γzz̄δ′g

(−1)
uz̄ (1− u∂u)δg(0)

uz

)
.

(C.7)

Similar expressions can be obtained for the opposite helicity Goldstone modes h′µν = h0
µν;ww and

h′µν = h̃2
µν;w̄w̄ whose asymptotic behavior is given by (C.3) with z and z̄ exchanged.

We thus see that the presymplectic form diverges in r, a feature which was already observed

in [29]. This divergence can be removed via an appropriate renormalization of ω. Writing the

presymplectic form in terms of the presymplectic potential Θ,

ω[δg, δ′g; g] = δΘ[δ′g; g]− δ′Θ[δg; g] , (C.8)

exposes the freedom to perform a shift24

Θ→ Θ + dY , (C.9)

where Y is a spacetime co-dimension 2 form. The freedom (C.9) expresses the residual ambiguity

in the definition of the presymplectic potential in the covariant phase space formalism [56].

We will adopt the same choice of Y as given in [29] and will not repeat the details here. As

shown there, the effect of this renormalization is to remove the radially divergent piece in ωr,

as well as remove the finite piece in ωu. The renormalized inner product therefore only receives

contributions from the finite piece in ωr:

Ωren[δg, δ′g; g] =

∫
dud2z ωr(0)[δg, δ′g; g] . (C.10)

To simplify (C.7) we make use of the equations of motion (see e.g. Appendix A of [50])

0 = 2hrz → (1− u∂u)δg(0)
uz = DzδCzz ,

0 = 2hzz → 4Dzδg
(0)
uz = (D2 − 2)δCzz + 2∂uδg

(0)
zz ,

0 = 2h′z̄z̄ → 4Dz̄δ
′g

(−1)
uz̄ = (D2 − 2)δ′γz̄z̄ ,

(C.11)

and integrate by parts on the celestial sphere. This yields

ωr(0) =
√
γ(δ′CABδN

AB − δCABδ′NAB +
1

2
D2δ′γz̄z̄δC

z̄z̄). (C.12)

24This renormalization procedure was recently shown to be covariant in terms of the boundary structure,

justifying a posteriori the counterterm prescription to remove the radial divergence [59].
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Finally, we can express the inner product in terms of the vector field Y A = (Y z, Y z̄ = 0) using

that the Goldstone modes are pure shift transformations δ′ = δshiftY (see (5.34) and (5.37)),

namely

δ′Czz = −uD3
zY

z , δ′Cz̄z̄ =
u

2
D2Dz̄Yz̄ , δ′γz̄z̄ = 2Dz̄Yz̄ ,

δ′Nzz = −D3
zY

z , δ′Nz̄z̄ =
1

2
D2Dz̄Yz̄ ,

(C.13)

where we used the identities

Dz̄D
z̄Yz̄ =

1

2
(D2 − 1)Yz̄ , [Dz̄, D

2]Yz̄ = −3Dz̄Yz̄ . (C.14)

We thus find

Ωren[δg, δshift
Y g; g] =

∫
dud2z

√
γ (D3

zY
zδCzz +

1

2
D2Dz̄Yz̄δC

z̄z̄ − uD3
zY

zδN zz +
u

2
D2Dz̄Yz̄δN

z̄z̄).

(C.15)

Everything being linear in the metric fields, one can integrate out the variation as

Ωren[δg, δshift
Y g; g] ≡ −δQY , with

QY =

∫
dud2z

√
γ (−D3

zY
zCzz − 1

2
D2Dz̄Yz̄C

z̄z̄ + uD3
zY

zN zz − u

2
D2Dz̄Yz̄N

z̄z̄). (C.16)
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