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Here, I generalize the connection between soft factors and classical solutions described in “Classical
Interpretation of the Weinberg Soft Factor,” showing that the same relation also holds when the
scattered charged particles are massless. Namely: the polarization vector times the soft factor for
a photon emitted in the x̂ direction during a scattering process is proportional to the time integral
of the classical radiated electric field for the same process, as measured by an observer sitting along
that direction at a large distance from the scattering process. While this is the opposite velocity
limit, compared to the previous paper, the underlying connection is the same: the duality between
position space and momentum space for the photon field near null infinity. The low frequency limit
picks out the large distance, classical behavior, which in turn aligns the position and momentum
space directions.

I. SOFT FACTOR AS EXPECTATION VALUE

Again, I start with the mode expansion for Fuz = ∂uAz
from “Low’s Subleading Soft Theorem as a Symmetry of
QED”:

Fuz = −eε̂
+
z̄

8π2

∞∫
0

dω ω[aout
+ (ωx̂)e−iωu + aout

− (ωx̂)†eiωu]. (I.1)

where the integral over u is given by:∫
du Fuz = −eε̂

+
z̄

8π
lim
ω→0+

ω[aout
+ (ωx̂) + aout

− (ωx̂)†]. (I.2)

Here, I have made the fact that these operators corre-
spond to outgoing photons explicit, relating to the fact
that I am measuring the radiation in a far-field region a
long time after the scattering process generating it oc-
curred.

Let’s draw some intuition from quantum mechanics. If
you have an operator O and a state |ψ〉 the expectation
value of the operator in this quantum state is:

〈ψ|O|ψ〉
〈ψ|ψ〉

(I.3)

In some sense, it is then natural to say that if I have
a scattering process going from some |in〉 state to some
|out〉 state, I can think of:

〈out| : OS : |in〉
〈out|S|in〉

(I.4)

like an expectation value of the operator for that pro-
cess. Here, the denominator is the matrix element de-
scribing the transition amplitude between the |in〉 and
|out〉 states. As opposed to the expectation value given
a fixed state in (I.3), both the numerator and denomina-
tor in (I.4) are transition amplitudes. Time ordering the
operator O with the scattering matrix S is used to ex-
plicitly distinguish operators which modify the incoming
and outgoing states.

Now let O =
∫
duFuz(r → ∞, x̂), where I have made

the remaining spatial dependence of (I.2) explicit. This

corresponds to the long-distance radiated electric field
measured at some point labeled by the direction x̂ on
the S2 at infinity.

As in (I.4), I would like to interpret the soft part that
factorizes from the matrix element:

− eε̂
+
z̄

8π lim
ω→0+

ω〈out|[aout
+ (ωx̂) + aout

− (ωx̂)†]S|in〉

= − eε̂
+
z̄

8π lim
ω→0+

ωS(0)+〈out|S|in〉
(I.5)

as the classical expectation value of the radiated electric
field integrated over time.

From a QFT point of view, the zero frequency limit
has extracted the Weinberg pole in the soft factor for
the matrix element describing the scattering process of
|in〉 to |out + 1 soft photon @ x̂〉. Note here, that this x̂
is the direction of the soft photon in momentum space.
The key to the connection between the classical mea-
surement and the QFT soft factor is that the massless
photon localizes in the large r limit to the same point on
the position space sphere as its direction in momentum
space. The multiplication by ω not only picks out just
the Weinberg pole in the soft factorization but, by leav-
ing just the x̂ dependence, also allows me to use the (I.4)
notion of an expectation value for operator (I.2) to arrive
at the position-space interpretation of the soft factor as a
classical measurement of the time integral of the radiated
electric field at large r, made by an observer sitting at x̂
on a far away sphere.

In the particular gauge choice:

Ar = 0, Au = O(r−1) (I.6)

only the fields Az and Az̄ remain in the large r limit, so
that Fuz = ∂uAz and (I.2) takes the form A+

z −A−z , the
difference of the gauge field at the future and past u limits
of I+, future null infinity.1 By going to this gauge, I can
express an observable field strength in terms of boundary
values of the gauge field.
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II. MASSLESS SCATTERING

In “Classical Interpretation of the Weinberg Soft Fac-
tor,” I showed that in the limit of non-relativistic scatter-
ing of charged particles, this connection between soft fac-
tors and classical measurements held, using results from
classical electromagnetism. The essential reason why the
interpretation worked is that the classical observable I
was interested in depended only on the charges and mo-
menta of the incoming and outgoing particles, which are
the same variables used to define the |in〉 and |out〉 states.
Here, I use the gauge field solution for a set of massless
charges emerging from the spacetime origin2 and show
that the classical value is again the soft factor.

The LSET gauge choice is equivalent to Ar = 0 in our
null coordinates (t = u+ r). After using conservation of
charge, the radial dependence drops out and:

Aµ(u, r, x̂) = (−
∑
j

Qj log

[
−pj · n

Ej

]
δ(u), 0, 0, 0) (II.1)

where n is a radial null vector parameterized by the direc-
tion x̂. Using a (u, z, z̄) dependent gauge transformation,
I can convert this expression into the further constrained
gauge choice (I.6). The result is that Au = Ar = 0 while:

Ai = ∂i
∑
j

Qj log

[
−pj · n

Ej

]
θ(u) (II.2)

for i ∈ {z, z̄}. This solution has the nice property that
is an exact 1-form on the S2 where the u dependence
implies that the value jumps when the wavefront of the
massless particles passes the observer’s position. Tak-
ing the large r limit does not affect the numerical form
of the expression since all of the particles are moving
on the same light shell, however, this limit has the nice
interpretation of allowing me to superpose massless scat-
tering processes starting at different points, where the
finite shifts in origin give subleading effects.
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Using (II.2), the classical value of the operator (I.2)
becomes:

A+
z −A−z = ∂z

∑
j

Qj log
[
−pj ·nEj

]
=
∑
j

Qj
pj ·∂zn
pj ·n

(II.3)

At the same time, the soft factor gives:

ε̂+z̄ lim
ω→0+

ωS(0)+ =
∑
j

Qj ε̂
+
z̄
pj ·ε+
pj ·ñ

=
∑
j

Qj ε̂
+∗
z

pj ·ε+
pj ·ñ

= ∂zñ ·
∑
j,α

Qjε
α∗ pj ·εα

pj ·ñ

=
∑
j

Qj
pj ·∂zñ
pj ·ñ

(II.4)

where ñ = q
ω . Here, I have dropped pre-factors cor-

responding to different normalization conventions for
the gauge fields. The third line uses the fact that
∂zñ(x̂) · ε−∗(x̂) = 0 so that the completeness relation for
polarization vectors and charge conservation,

∑
Qj = 0,

can be used to arrive at the fourth line.

The final results of (II.3) and (II.4) are the same when
we set ñ corresponding to the direction of the soft pho-
ton, equal to n corresponding to the direction at which
the classical field is measured. What is interesting is
that, while from the QFT interpretation the soft factor
naturally gets exponentiated to allow multiple soft in-
sertions, there is less of a motivation to do so for the
time integrated quantity in the classical interpretation,
except for computing correlation functions, for example.
Since it can be interpreted as a closed 1-form on the
S2, A+ − A− = dφ, correlation functions of the scalar φ
rather than A at different points, are more natural, and
would be the analog of multiple soft emissions in different
directions.
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