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I explore the asymmetry between displacements in space and time for motion in one dimension.

The existence of a maximum velocity c establishes a

notion of symmetry between space and time: it gives

a way to equate distances to time intervals such that a

space-time diagram can appear to put ct and x on equal

footing. There exists a fundamental di↵erence between

displacements in space and time, however. While I can

move either forward or backward in x, I can only move

forward in time. If I take my current position as the

origin of my coordinate system, the region of possible

displacements (cdt, dx) only fills a half-plane.

This raises a question about whether dx and cdt are

the best coordinates to use to describe a displacement.

For instance, using a polar coordinate system to describe

a change in position in the (x, y) plane (where my current

position is always taken as the origin), I could describe

my motion as a series of positive dr displacements along

di↵erent directions ✓ that parameterize the slope. While

such a system may be convenient for a single, instanta-

neous displacement, it makes reconstructing the full path

more challenging than if (dx, dy) were given. It is ideal to

find descriptions of displacements that are independent

of the observer.

In what follows, I consider what happens when I map

the half plane (cdt, dx) onto a full plane. It is possible

to perform a conformal mapping of this type by tem-

porarily treating the displacement as a complex vari-

able z = cdt + idx and squaring to get w =

z2

2 . The

real and imaginary parts are then used to define the

horizontal and vertical coordinates in this new plane:
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) = d⌘d⇠ as the horizontal coor-

dinate and cdtdx as the vertical coordinate.

The result of this mapping is depicted in Figure 1.

It stretches angles at the origin by a factor of 2, but

preserves the orthogonality of lines of constant cdt and

dx. The curved lines in the (cdt, dx) plane show contours

of constant ds

2
and cdtdx, while the curved lines in the

(ds

2
, cdtdx) plane show contours of constant cdt and dx.

Because this map squares the magnitude of the initial

space-time displacement, the coordinates of the map are

now area elements. What is intriguing is that the two

orthogonal area element coordinates correspond to those

of the Minkowski (ct, x) diagram and the rotated (⌘, ⇠)

diagram of my paper “Motivating Special Relativity us-

ing Linear Algebra.” While the former (ct, x) basis di-

agonalizes the metric, the latter (⌘, ⇠) basis diagonalizes

the Lorentz transformation.

This mapping also highlights the x ! �x symmetry

that was important in my linear algebra derivation: it

moves (0,�dx) and (0,+dx) to the same point on the

negative d⌘d⇠ axis. An irreconcilable ambiguity in the

definition of the map along this axis would arise if we
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FIG. 1. Conformal mapping of space-time displacements.

could not consider these displacements as fundamentally

the same in some respect. Restricting v < c is equivalent

to requiring displacement vectors to have a positive value

of d⌘d⇠. Placing the same restriction in the (cdt, dx)

plane would be analogous to saying that a particle could

only move forward in time if there was no maximum ve-

locity.

In my linear algebra derivation of Special Relativity,

I showed that the area element d⌘d⇠ is invariant under

boosts. Meanwhile cdt depends on the frame. In this new

coordinate system, the displacements along the horizon-

tal axis behave similar to time displacements in Galilean

transformations: they are the same regardless of the ref-

erence frame. As such, we can divide by |ds| to get a set

of displacements, rather than area elements, that can be

more easily compared to Galilean intuition.

For a particle traveling at a constant positive �, the

time-like and space-like displacements are:
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p
1� �

2
dt d� =

1p
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2
dx. (1)

These coordinates describe the increment in proper time,

⌧ , and the length contraction of distances parallel to the

motion.

The mapping from half-plane to full plane thus illus-

trates important features of Special Relativity. Moreove,

these features of the w(z) mapping are consistent with

Special Relativity because the scale factor for the time

axis relative to the space axis, c, was equal to the speed

of light.
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