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I present a derivation of the Minkowski metric and visualizations of the space-time dot product.

I. POSTULATES

1. The dot product is linear and commutative.

2. The dot product is invariant under boosts.

3. The metric defining the dot product is independent

of the reference frame.

II. DERIVING THE METRIC

The goal is to construct a scalar from two space-time

vectors that is invariant during Lorentz boosts between

inertial reference frames. Requiring that the dot product

be linear (Postulate 1) gives:
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where the matrix M corresponds to the Minkowski met-

ric, written ⌘

µ⌫

for Special Relativity. I use M to distin-

guish it from the (⌘, ⇠) basis defined in my “Motivating

Special Relativity Using Linear Algebra” paper.

If the dot product is assumed to be commutative: A ·
B = B · A, so M is symmetric. This holds in any basis.

Moreover, the (ct, x) basis should diagonalizeM so that a

displacement in the rest frame is orthogonal to a change

in time. This intuition will be used as a cross check.

Starting in the (⌘, ⇠) frame:
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I have used the symmetry of M and a restriction that

the entries are real to reduce M to three parameters,

corresponding to dot products of the ⌘̂ and

ˆ

⇠ unit vectors

as in Equation 1 for the (ct, x) basis.

As shown in the linear algebra-based derivation pa-

per, a boost stretches ⌘ by �1(v) and ⇠ by �2(v). This

stretching can be absorbed into M

0
:
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The matrices M and M

0
can be equated by choosing A

and B to pick out each entry, satisfying Postulate 2.

Postulate 3 says that M should be independent of �.

While M = M

0
would hold if f / 1/�

2
1, the definition of

the dot product should not change with reference frames.

This is satisfied if f = h = 0. Moreover, �1�2 = 1 gives

M = g�

x

.

Finally, the dot product should reduce to the ordinary

dot product for two vectors along the x̂ =

⇠̂�⌘̂p
2
axis. This

gives g = �1 for the convention where spatial dot prod-

ucts are positive. Rotating back into the (ct, x) basis:
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I have thus derived the space-time metric for a single spa-

tial coordinate, finding the invariant dot product between

two space-time vectors: A ·B = �a
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x
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III. VISUALIZING DOT PRODUCTS

While spatial bases can be rotated onto each other,

for boosts, the transformations are restricted: time-like

and space-like vectors on opposite sides of the light cone

cannot be transformed into one another.

The above derivation generalizes to three spatial di-

mensions by having ŷ and ẑ behave like x̂ so that:

A · B = �a

t

b

t

+ ~a · ~b, where ~a is the spatial part of A.

It is possible to rotate the spatial axes so that x̂ aligns

with A and then only use (b

t

, b

x

).

To build intuition, consider the case A = B. This

dot product is zero if a

t

= a

x

and is largest if one of

the two components is zero. For general B: |A · B| =
|(a

x

, a

t

, 0)⇥ (b

t

, b

x

, 0)|, illustrating the cross-product-like

nature of the space-time dot product when time is treated

as an additional spatial coordinate. The magnitude of

this cross product is equal to the area defined by re-

flecting one of the vectors across the line x = ct. Al-

ternatively, a standard dot product can be taken after

reflecting one of the vectors in time. Both methods are

illustrated in Figure 1.
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FIG. 1. Two space-time dot product visualizations which use

reflections in the (ct, x) plane.
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