
Motivating Special Relativity using Linear Algebra

Sabrina Gonzalez Pasterski
(Dated: July 24, 2013)

I present a geometrical derivation of results from Special Relativity for a single spatial coordinate.

I. POSTULATES

In this paper, I derive results from Special Relativity
using symmetry and the following postulates:

1. The speed of light is constant in any reference
frame.

2. The transformation of space-time coordinates when
changing between reference frames is linear.
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FIG. 1. Choice of basis to diagonalize the transformation.

II. TRANSFORMING COORDINATES

When describing the motion of a particle along the x

axis, it is convenient to plot position as a function of
time. Figure 1a shows such a plot. The green line has
slope � = v

c and describes the motion of a particle which
moves at a constant velocity v and passes through x = 0
at t = 0. The two diagonals describe the paths of photons
traveling at speed c in the ±x̂ directions.

According to Postulate 1, if we change the velocity of
our reference frame by “boosting” along the x axis, the
speed of light will still be c, meaning that in the new
reference frame, the paths of photons will still have slope
±1. If, as per Postulate 2, the transformation is linear,
these diagonals will be eigenvectors of the transforma-
tion. Figure 1b rotates the (ct, x) coordinates by 45� to
the (⌘, ⇠) basis that diagonalizes the boost. In this ba-
sis, a boost in velocity amounts to applying the linear
transformation:
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for some eigenvalues �1(v) and �2(v) which determine
the scaling of the axes during a boost by v.

In this (⌘, ⇠) basis, the slope of a particle traveling at

a constant velocity is m = 1+�
1�� . A boost into a frame in

which this particle has zero velocity must take this slope
to 1:
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Now consider a switch in the sign of v by adding a sec-
ond particle moving in the opposite direction. If both the
+v and �v particles pass through x = 0 at t = 0, their
positions at any time will be reflections of one another
across the m = 1 diagonal in the (⌘, ⇠) plane, which cor-
responds to the time axis. If scaling ⌘ by �1(v) and ⇠ by
�2(v) brings the +v particle’s space-time coordinate at a
given ct to a particular ct0 on the m = 1 diagonal during
a +v boost, then scaling ⌘ by �2(v) and ⇠ by �1(v) will
bring the corresponding space-time coordinate of a �v

particle’s path to the same point on the m = 1 diagonal.
Since this is equivalent to performing a �v boost instead,
�1(�v) = �2(v).
Because �1(v) determines the scaling of the ⌘ axis dur-

ing a boost by v, a subsequent boost by �v should undo
this rescaling, giving �1(�v) = 1/�1(v). This says that
�1(v)�2(v) = 1: area elements are invariant under a
boost. Solving for �1 and �2 gives:
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where the limit of � ! 1 for v ! 0 sets the overall sign
of the eigenvalues.
From the definition of ⌘ and ⇠:
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this transformation reduces to:
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in the (ct, x) basis, with � = 1p
1��2

. This completes a

derivation of the standard Lorentz transformation for a
single spatial coordinate in Special Relativity.

III. APPLICATIONS

Figure 2 illustrates the e↵ect of a boost and gives a
geometrical picture from which the velocity addition for-
mula, length contraction, time dilation, the invariant in-
terval, and the relativistic Doppler e↵ect will be derived.
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FIG. 2. Illustration of a boost in the (⌘, ⇠) basis.

III.1. Velocity Addition

If one particle is traveling at v1, another at v2, the rel-
ative speed as seen from the reference frame of particle 1
will not generally be v2 � v1. To get the correct result,
take a triangle with one vertex at the origin, one at the
point (1,m1), and one at the point (1,m2), as illustrated
by the blue lines in Figure 2a. Next, boost to a frame
where m1 is along the diagonal, corresponding to the rest
frame of particle 1 (Figure 2b).

In this frame, the point (1,m2) transforms to:
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Solving for m0 gives:
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as the relative velocity. The velocity addition formula
from Special Relativity for two particles moving along
the same axis follows from taking �1 ! ��1.

III.2. Length Contraction

Figure 2 also illustrates length contraction. A solid
object at rest traces out a diagonal ribbon parallel to the
slope m = 1 time axis. Let one edge be at x = 0 and
the other be at x = �LP . This gives ⇠ = ⌘ and ⇠ =
⌘ �

p
2LP , corresponding to the top and bottom green

lines in Figure 2a, respectively. When the reference frame
is boosted by v in Figure 2b, the edges are described by:
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Physical length is measured at constant time. This is
shown by the red arrows, which mark the separation,
as measured along the x and x

0 axes, between the top
and bottom green lines in the stationary and boosted
frames. The line ⇠

0 = �⌘

0 in Figure 2b intersects the
top green line at (0, 0) and the bottom green line atp
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2⇥ LPp
2
(1,�1). The distance between these points

is
p
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2
LP . The length of the object in the moving

frame is thus contracted: L

0 = LP
� , compared to the

proper length LP in the object’s rest frame.

III.3. Time Dilation

Proper time is the time between two events at the same
x. This corresponds to the distance between the origin
and the brown cross in Figure 2a. The points (0, 0) and
ctPp
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in Figure 2b. Here, the time separation is the distance
between the x

0 axis and the dashed brown line:
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This result is known as time dilation. The time between
two events is longer in a reference frame where those
events occur at di↵erent x positions.

III.4. The Invariant Interval

The fact that area elements are invariant tells us that:
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is invariant under boosts. Plotting the coordinates of
two events, A and B, in the (⌘, ⇠) plane, the area of
a rectangular envelope with these two events at opposite
corners (the light blue regions in Figure 2) is proportional
to the invariant interval between these events: �s
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III.5. Relativistic Doppler E↵ect

In the (⌘, ⇠) plane, horizontal lines correspond to pho-
tons traveling in the �x̂ direction, while vertical lines
correspond to photons traveling in the +x̂ direction. The
frequency observed by a person at x = 0 is inversely pro-
portional to the distance between intersections of these
gridlines and the time axis (the m = 1 diagonals shown
in gray in Figure 2).

Since a boost in the +x̂ direction stretches ⌘ by
q

1+�
1�� ,

the vertical gridlines in the boosted frame are further
apart than in the rest frame. The frequency of light mov-
ing in the +x̂ direction is thus redshifted by a factor ofq

1��
1+� as the observer moves away from the source.

Since the horizontal gridlines are closer together in the
boosted frame, the frequency of light moving in the �x̂

direction is blue shifted by a factor of
q

1+�
1�� .
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