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Outline

vWhy	are	we	interested	in	superrotations?	

vWhich	scattering	basis	do	they	prefer?

vWhat	is	the	‘conformal	basis’?

v How	can	we	transform	amplitudes	we	know	to	this	basis?

v Can	we	expect	‘standard’	CFT	correlation	functions?

v Does	this	analysis	teach	us	something	more	about	IR	phyiscs?
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Motivation

vWhat	can	IR	physics	teach	us	about	gravitational	scattering?
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More	Symmetries	⇒	More	Constraints
The	asymptotic	symmetry	group of	asymptotically	flat	spacetimes is	much	larger	than	Poincare



Motivation

vWhat	can	IR	physics	teach	us	about	gravitational	scattering?

v Does	this	enhanced	symmetry	algebra	hint	at	a	celestial	sphere	
...holographic	dual?
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More	Symmetries	⇒	More	Constraints
The	asymptotic	symmetry	group of	asymptotically	flat	spacetimes is	much	larger	than	Poincare



A	Triangle	of	Relations

vWhat	can	IR	physics	teach	us	about	gravitational	scattering?
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There	exists	a	generic	pattern	of	connections	between	asymptotic	symmetries,	soft	theorems,	and	
memory	effects…

Soft	Theorems																					

Memories																						Symmetries
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vWhat	can	IR	physics	teach	us	about	gravitational	scattering?
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There	exists	a	generic	pattern	of	connections	between	asymptotic	symmetries,	soft	theorems,	and	
memory	effects…

Soft	Theorems																					

Memories																						Symmetries

Such	that	by	understanding	simpler	
examples	we	can	identify	missing	
components	of	new	iterations…

e
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vWhat	can	IR	physics	teach	us	about	gravitational	scattering?
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There	exists	a	generic	pattern	of	connections	between	asymptotic	symmetries,	soft	theorems,	and	
memory	effects…

Soft	Theorems																					

Memories																						Symmetries

Such	that	by	understanding	simpler	
examples	we	can	identify	missing	
components	of	new	iterations…

e𝑃$
𝐽$&



A	Triangle	of	Relations

vWhat	can	IR	physics	teach	us	about	gravitational	scattering?
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There	exists	a	generic	pattern	of	connections	between	asymptotic	symmetries,	soft	theorems,	and	
memory	effects…

Soft	Theorems																					

Memories																						Symmetries

e𝑃$
𝐽$&

In	this	manner	a	brand	new	iteration	was	
completed	corresponding	to	superrotations.	
This	iteration	is	related	to	a	generalization	of	
Lorentz	transformations	and	has	motivated	
looking	at	𝓢-matrix	elements	in	a	new	basis	
with	definite	SL(2,C)	weights	
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𝑆) at	each	point
constant	time	slices

𝑖+

𝑖,

𝑖-

𝒥,

𝒥-

massive	particles	exit	here

massless	particles	enter	here

massive	particles	enter	here

the	point	at	∞

massless	particles	exit	here

A	Simple	Example

v Consider	the	conformal	
compactification	of	
Minkowski spacetime



A	Simple	Example
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constant	time	slices

𝑖+

𝑖,

𝑖-

𝒥,

𝒥-

|Ψ〉

v In	gauge	theories	there	are	constraints	that	
need	to	be	satisfied	for	the	initial	data	on	a	
Cauchy	slice

𝐸											

𝑞



A	Simple	Example
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constant	time	slices

𝑖+

𝑖,

𝑖-

𝒥,

𝒥-

|Ψ〉
𝑖+

𝑖,

𝑖-

𝒥,

𝒥-Ψ 56

Ψ 789

v Pushing	the	Cauchy	slice	up	to	null	
infinity	the	constraints	relate	radiative	
data	to	changes	in	charge	kinematics	



A	Simple	Example
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𝑖+

𝑖,

𝑖-

𝒥,

𝒥-Ψ 56

Ψ 789

v Pushing	the	Cauchy	slice	up	to	null	
infinity	the	constraints	relate	radiative	
data	to	changes	in	charge	kinematics	
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Some	more	details:

•Radial	Expansion:

•ASG	that	preserves	this	expansion:

•Mode	Expansion:

•Constraint	Equation:
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Az(r, u, z, z̄) = Az(u, z, z̄) +
1P

n=1

A(n)
z (u,z,z̄)

rn

Au(r, u, z, z̄) =
1
rAu(u, z, z̄) +

1P
n=1

A(n)
u (u,z,z̄)
rn+1

Fur = Au

Fzz̄ = @zAz̄ � @z̄Az

Fuz = @uAz

ds2 = �du2 � 2dudr + 2r2�zz̄dzdz̄

z = ei� tan
✓

2
�zz̄ =

2

(1 + zz̄)2

Coordinate	Conventions:

�✏Az(u, z, z̄) = @z✏(z, z̄)

Aµ(x) = e
X

↵=±

Z
d3q

(2⇡)3
1

2!q

h
✏↵

⇤

µ (~q)a↵(~q)e
iq·x + ✏↵µ(~q)a↵(~q)

†e�iq·x
i

@uAu = @u(D
zAz +Dz̄Az̄) + e2ju[arXiv:1407.3789]
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A	Simple	Example



Two	key	points:

•Saddle	point	at	large	𝑟	picks	out	a	gauge	boson	momentum	pointing	in	the	same	direction	as	
where	an	observer	near	null	infinity	would	detect	it.		As	a	result,	one	ends	up	with	a	mode	
expansion	where	the	angular	integral	localizes,	and	(𝑢, 𝜔) remain	as	Fourier	conjugates.	

• ∫ 𝑑𝑢	picks	out	𝜔 → 0.		As	such	we	can	relate	the	soft	factors	to	the	constraint	equations:		
Fourier	transform	of	a	pole	K

L
	 is	a	step	function
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eiq·x = e�i!u�i!r(1�q̂·x̂) Az(u, z, z̄) = � i

8⇡2

p
2e

1 + zz̄

Z 1

0
d!

⇥
a+(!x̂)e

�i!u � a�(!x̂)
†ei!u

⇤⇒

hzn+1, zn+2, ...|a�(q)S|z1, z2, ...i = S(0)�
hzn+1, zn+2, ...|S|z1, z2, ...i+O(1)

S(0)� =
X

k

eQk
pk · ✏�

pk · q

[arXiv:1407.3789,	arXiv:1505.00716 ]
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Some	Conventions:
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Integrate	the	constraint	equation	along	𝑢

The	soft	factor	indicates	that	typical	scattering
processes	will	produce	a	nonzero	𝑢 integrated
electric	field.	

�Au = 2Dz�Az + e2
Z

duju

S(0)±
p = eQ

p · ✏±

p · qpµ = m�(1, ~�)

Er =
Q

4⇡r2
1

�2(1� ~� · n̂)2

�Az = � e

4⇡
✏̂⇤+z !S(0)+

� e
4⇡ lim

!!0
![Dz ✏̂⇤+z S(0)+

p +Dz̄ ✏̂⇤�z̄ S(0)�
p ] = �e2 Q

4⇡
1

�2(1�~�·n̂)2

[arXiv:1505.00716 ]
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A	Simple	Example
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•Upshot:		The	residue	of	the	Weinberg	pole	indicates	a	nonzero	value	for	certain	
low-energy	radiation	observables	aka	“memory	effects”

•Since	setting	these	modes	to	zero	would	trivialize	the	allowed	scattering	events,	we	
get	with	this	class	of	boundary	conditions	a	larger	class	of	gauge	transformations	
that	preserve	the	radial	order	of	the	falloffs	while	shifting	the	boundary	values	aka
“large	gauge	transformations”	

𝑢

symmetry

memory

𝐴N
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A	Triangle	of	Relations
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Soft	Theorems																					

Memories																						Symmetries
what	we’re	after:
More	Symmetries	⇒	More	Constraints	on	𝓢-matrix

non-zero	net	effects	in	a	typical	scattering	process
forces	us	to	have	asymptotic	behavior	that	allows	them,
these	extra	symmetries	then	act	non-trivially

relate	𝒮-matrix	elements	for	states	with	and	without	
extra	soft	gauge	particle	

Fourier	transform:	
long	time	↔ low	energy	

Ward	identities
[arXiv:1308.0589 arXiv:1312.2229]

step	(net	change)	
vs	baseline	(starting	point)



A	Triangle	of	Relations
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Soft	Theorems																					

Memories																						Symmetries

i)	Weinberg	– photon	O(	K
L
)	

ii)	Weinberg	– graviton	O(K
L
)	

iii)	Cachazo &	Strominger – graviton	O(1)	

i)	Liénard-Wiechert /	Bieri &	Garfinkle
ii)	Zeldovich &	Polnarev /	Christodoulou	
iii)	Pasterski,	Strominger,	&	Zhiboedov

(global) (asymptotic)	

i)	e-charge	 large	U(1)	
ii)	𝑃$ supertranslations
iii)	𝐽$& superrotations



A	Triangle	of	Relations
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Soft	Theorems																					

Memories																						Symmetries

i)	Weinberg	– photon	O(	K
L
)	

ii)	Weinberg	– graviton	O(K
L
)	

iii)	Cachazo &	Strominger – graviton	O(1)	

i)	Liénard-Wiechert /	Bieri &	Garfinkle
ii)	Zeldovich &	Polnarev /	Christodoulou	
iii)	Pasterski,	Strominger,	&	Zhiboedov

(global) (asymptotic)	

i)	e-charge	 large	U(1)	
ii)	𝑃$ supertranslations
iii)	𝑱𝝁𝝂 superrotations



Asymptotically	Flat	Spacetimes

12/05/18 SGP	@	NORTHEASTERN 21

𝑑𝑠) = −𝑑𝑡) + 𝑑𝑥) + 𝑑𝑦) + 𝑑𝑧)

BMS	1960’s

vWant	to	consider	non-trivial		
gravitational	backgrounds	that	
are	``close”	to	being	flat

Ø Approach	flat	spacetime
far	away	from	sources



Asymptotically	Flat	Spacetimes
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𝑆) at	each	point
constant	time	slices

𝑖+

𝑖,

𝑖-

𝒥,

𝒥-

massive	particles	exit	here

massless	particles	enter	here

massive	particles	enter	here

the	point	at	∞

massless	particles	exit	here
v Interested	in	set	of	diffeomorphisms	
that	preserve	class	of	asymptotically	
flat	metrics,	characterized	by	radial	
fall-off	near	null	infinity

v ASG		= allowed	gauge	symmetries

trivial	gauge	symmetries



Asymptotically	Flat	Spacetimes

•Radial	Expansion:

•ASG	that	preserves	this	expansion:
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𝑖+

𝑖,

𝑖-

𝒥,

𝒥-

ds2 = �du2 � 2dudr + 2r2�zz̄dzdz̄ + 2mB
r du2

+
�
rCzzdz2 +DzCzzdudz +

1
r (

4
3Nz � 1

4@z(CzzCzz))dudz + c.c.
�
+ ...

⇠+ =(1 +
u

2r
)Y +z@z �

u

2r
Dz̄DzY

+z@z̄ �
1

2
(u+ r)DzY

+z@r +
u

2
DzY

+z@u + c.c

+ f+@u � 1

r
(Dzf+@z +Dz̄f+@z̄) +DzDzf

+@r

Coordinate	Conventions:

z = ei� tan
✓

2
�zz̄ =

2

(1 + zz̄)2

f+ = f+(z, z̄) @z̄Y
+z = 0



Asymptotically	Flat	Spacetimes

•Radial	Expansion:

•ASG	that	preserves	this	expansion:
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ds2 = �du2 � 2dudr + 2r2�zz̄dzdz̄ + 2mB
r du2

+
�
rCzzdz2 +DzCzzdudz +

1
r (

4
3Nz � 1

4@z(CzzCzz))dudz + c.c.
�
+ ...

⇠+ =(1 +
u

2r
)Y +z@z �

u

2r
Dz̄DzY

+z@z̄ �
1

2
(u+ r)DzY

+z@r +
u

2
DzY

+z@u + c.c

+ f+@u � 1

r
(Dzf+@z +Dz̄f+@z̄) +DzDzf

+@r

Coordinate	Conventions:

z = ei� tan
✓

2
�zz̄ =

2

(1 + zz̄)2

f+ = f+(z, z̄) @z̄Y
+z = 0

Radiative	Data

Superrotations



Superrotation Charge

vWe	can	demonstrate	a	semiclassical Ward	identity	for	superrotations using	the	
subleading soft	graviton	theorem	[arXiv:1406.3312].

12/05/18 SGP	@	NORTHEASTERN 25

@umB =
1

4
@u

⇥
D2

zC
zz +D2

z̄C
z̄z̄
⇤
� Tuu

@uNz =
1

4
@z

⇥
D2

zC
zz �D2

z̄C
z̄z̄
⇤
+ @zmB � Tuz

< out|Q+[Y ]S � SQ�[Y ]|in >= 0

8⇡GQ+[Y ] =

Z
du

Z
d2z

p
�@u[�uY ADAmB + Y ANA + ...]



Superrotation Charge

vWe	can	demonstrate	a	semiclassical Ward	identity	for	superrotations using	the	
subleading soft	graviton	theorem	[arXiv:1406.3312].
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Q+[Y ] = Q+
S
[Y ] +Q+

H
[Y ]

Q+
S [Y ] =

1

2

Z

I+

dud2zD3
zY

zu@uC
z
z̄ Q+

H
[Y ] = lim

⌃!I+

Z

⌃
d⌃ ⇠µn⌫

⌃T
M

µ⌫



Superrotation Charge

vWe	can	demonstrate	a	semiclassical Ward	identity	for	superrotations using	the	
subleading soft	graviton	theorem	[arXiv:1406.3312].
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hout|a�(q)S|ini =
⇣
S(0)� + S(1)�

⌘
hout|S|ini+O(!)

S(0)� =
X

k

(pk · ✏�)2

pk · q S(1)� = �i
X

k

pkµ✏�µ⌫q�Jk�⌫
pk · q

as	Fourier	mode																										
of		field	operator

𝑞\]7^ ⇔ 𝑞\`7`		 &					 limL→+ ⇔∫ 𝑑𝑢	
eiq·x = e�i!u�i!r(1�q̂·x̂)



Superrotation Charge

vLooking	again	at	the	superrotation vector	field	near	null	infinity,	we	notice	we	
have	two	copies	of	the	Witt	algebra:

vMoreover,	for	a	particular	choice	of																				we	find	that	the	soft	part	of	the	
charge	takes	the	form	of	a	putative	2D	stress	tensor	[arXiv:1609.00282]	.	
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Tzz ⌘ i
8⇡G

R
d2w 1

z�wD2
wD

w̄
R
duu@uCw̄w̄

hTzzO1 · · · Oni =
nX

k=1


hk

(z � zk)2
+

�zk
zkzk

z � zk
hk +

1

z � zk
(@zk � |sk|⌦zk)

�
hO1 · · · Oni

h =
1

2
(s+ 1 + iER) h̄ =

1

2
(�s+ 1 + iER)

� = h+ h̄ s = h� h̄

Weight	Conventions:

Y z ⇠ 1

z � w

⇠+|J+ = Y +z@z +
u

2
DzY

+z@u + c.c.



Superrotation Charge

vLooking	again	at	the	superrotation vector	field	near	null	infinity,	we	notice	we	
have	two	copies	of	the	Witt	algebra:

vMoreover,	for	a	particular	choice	of																				we	find	that	the	soft	part	of	the	
charge	takes	the	form	of	a	putative	2D	stress	tensor	[arXiv:1609.00282]	.	
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8⇡G
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d2w 1

z�wD2
wD

w̄
R
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+
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�
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1

2
(s+ 1 + iER) h̄ =

1

2
(�s+ 1 + iER)

� = h+ h̄ s = h� h̄

Weight	Conventions:

Y z ⇠ 1

z � w

We	need	Rindler energy	eigenstates!

⇠+|J+ = Y +z@z +
u

2
DzY

+z@u + c.c.



Constructing	A	Conformal-Primary	Basis

vUsing	that	the	Lorentz	group	SO(1,d+1)	in	𝑹K,A,K acts	as	the	conformal	group	
on	𝑹A define	the	massive	scalar	conformal	primary	wavefunction to:

• satisfy	the	(d+2)-dimensional		massive	Klein-Gordon	equation	of	mass	m:

• transform	covariantly as	a	scalar	conformal	primary	operator	in	d	dimensions	under	
an	SO(1,d+1)	transformation:
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✓
@

@X⌫

@

@X⌫
�m2

◆
��(X

µ; ~w) = 0

�� (⇤µ
⌫X

⌫ ; ~w 0(~w)) =

����
@ ~w 0

@ ~w

����
��/d

��(X
µ; ~w)

[arXiv:1705.01027]



Constructing	A	Conformal-Primary	Basis
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𝑚 ≠ 0
𝑤 ∈ 𝑹A𝑝 = 𝑚�̂�

�̂�

𝑞

ds2
Hd+1

=
dy2 + d~z · d~z

y2

p̂(y, ~z) =

✓
1 + y2 + |~z|2

2y
,
~z

y
,
1� y2 � |~z|2

2y

◆

p̂µ(y0, ~z 0) = ⇤µ
⌫ p̂

⌫

qµ(~w) =
�
1 + |~w|2 , 2~w , 1� |~w|2

�

qµ(~w 0) =

����
@ ~w 0

@ ~w

����
1/d

⇤µ
⌫q

⌫(~w)



Constructing	A	Conformal-Primary	Basis
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Constructing	A	Conformal-Primary	Basis

v The	desired	properties	are	met	by	the	convolution:
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�±
�(X

µ; ~w) =

Z

Hd+1

[dp̂]G�(p̂; ~w) exp [±imp̂ ·X ]

𝑃 vInterpretation	as	bulk-to-boundary	propagation	in	
momentum	space

vHave	plane	wave	⇒ highest-weight,		what	about	
reverse?



Constructing	A	Conformal-Primary	Basis

v The	orthogonality	conditions

v Imply	we	can	go	in	the	opposite	direction	highest-weight	⇒ plane	wave	
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Constructing	A	Conformal-Primary	Basis

v If	we	define	the	shadow	for	a	scalar	as

vThe	action	on	our	scalar	wavefunctions	shows	linear	dependence	between	
weights	Δ and	d − Δ
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Constructing	A	Conformal-Primary	Basis

vBy	forming	the	combination	𝜔 = `
)p

we	can	further	use	the	boundary	behavior	
of	𝐺r to	explore	the	massless	analog:

vThe	first	term	results	in	a	Mellin transform	of	the	energy,	in	which	the	
reference	direction	is	the	same	as	the	momentum,	and	satisfies	the	desired	
properties	of	a	massless	conformal	primary.	
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Constructing	A	Conformal-Primary	Basis
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𝑚 = 0

𝑚 ≠ 0
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Principal	Continuous	Series
of		SO(1,d+1)canonical	reference	

direction	when	m=0



Constructing	A	Conformal-Primary	Basis

v Photon

v Graviton
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Constructing	A	Conformal-Primary	Basis

v The	shadow	is	linearly	independent.

v Demanding	conformal	profile	fixes	residual	gauge	transformations	but	within	
gauge	equivalence	class	can	return	to	Mellin representative.
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Amplitude	Transforms

v It	is	useful	to	point	out	that	the	above	transforms	can	be	applied	directly	to	
the	S-matrix	elements.		

12/05/18 SGP	@	NORTHEASTERN 40

eA(�i, ~wi) ⌘
nY

k=1

Z

Hd+1

[dp̂k]G�k(p̂k; ~wk) A(±mip̂
µ

i
)

eA(�i, ~w
0
i(~wi)) =

nY

k=1

����
@ ~w0

k

@ ~wk

����
��k/d

eA(�i, ~wi)Massive	scalar

𝑚 = 0 eA(�i, ~wi) ⌘
nY

k=1

Z 1

0
d!k!

��1
k A(±!kq

µ
k )



Amplitude	Transforms

v Note	that	transforming	momentum	space	
amplitudes	directly,	is	an	alternative	to	previous	
approaches	[hep-th/0303006,arXiv:1609.00732]	
towards	flat	space	holography,	which	have	looked	
at	a	foliation	of	Minkowski space	to	reproduce	
AdS/CFT,	dS/CFT	on	each	slice.
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Example:	Massive	Scalar	3pt

v For	d=2,	we	use	the	projective	coordinate	𝑤, for	the	celestial	sphere	𝐶𝑆) at	the	
boundary	of	the	lightcone from	the	origin.	𝑤 undergoes	mobius transformations	when	
the	spacetime undergoes	Lorentz	transformations	
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Example:	Massive	Scalar	3pt

v Lorentz	covariance	is	built	into	the	definition	of	the	basis.		If	non-zero/finite	4D	Lorentz	
covariance	dictates	2D-correlator	form.

v The	behavior	of	low-point	“correlation	functions”	is	strongly	dictated	by	momentum	
conservation	in	the	bulk.		Special	scattering	configurations	can	be	used	to	get	Witten	diagram-
like	results.		
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Example:	MHV	Mellin

vMomentum	conservation	strongly	dictates	the	form	of	low	point	Mellin amplitudes.		
If	we	think	of	correlation	functions	of	Mellin operators,	we	see	the	contact	nature	of	
the	two	point	function	already	from	the	scalar	Mellin modes:

v For	MHV	amplitudes	(and	any	theory	with	scale	invariance)	one	finds	that	the	Mellin
transformed	amplitudes	have	a	conservation-of-weight
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Example:	MHV	Mellin

v Once	you	tell	me	the	directions	of	scattering,	the	frequencies	in	the	mellin integral	
get	fixed,	ie the	momentum	conserving	delta	functions	localize	the	frequency	integrals	
(and	then	some).		For	a	2 → 2 process	with	helicities	(− −	+	+)
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Example:	MHV	Mellin

v On-shell	+	momentum	conserving	kinematics	restrict	2 → 2 reference	
directions	to	lie	on	a	circle	within	the	celestial	sphere

vMHV	3pt	has	no	support	in	(1,3)	signature	but	can	analytically	continue	to	
(2,2)	signature	with	independent	real	coordinates
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What	Needs	To	Be	Done

v The	current	map	interpreting	S-matrix	elements	as	2D	CFT	correlators	seems	
to	imply	either	an	exotic	CFT	2	or	that	the	map	needs	to	be	finessed…		Options?

Ø Is	there	a	better	shadow-related	basis?	

ØThe	mode	combination	that	decouples	in	the	soft	limit	is	precisely	a	linear	
combination	of	Mellin	and	Mellin+shadow	in	the	limit	where	Im	Δ = 0:
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Understand	the	conformally soft	limit!



What	Needs	To	Be	Done

v Illustrate	some	version	of	an	OPE:

Ø Collinear	limits	in	higher	point	amplitudes	avoiding	low	point	kinematic	
issues	(Taylor)?	

ØRelate	worldsheet CFT	to	celestial	sphere	CFT	

ØConsider	full	S-matrix	rather	than	transfer	matrix	so	that	have	nonzero	4pt	
functions	even	for	free	theory	(w/	SH	Shao?),	then	use	recent	literature	on	
CFT	principal	series	completeness	relations	to	interpret	intermediate	
exchanges.
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What	Has	Been	Done

v Beautiful	expressions	for	full	mellin transform	(which	inherently	probe	UV	
structure)	of	string	amplitudes	[arXiv:1806.05688]

vSystematic	n-pt	NkMHV	[arXiv:1711.08435]

v3D	example	of	CB	decomposition	[arXiv:1711.06138]

vInteresting	statments	about	symplectic	pairing	of	conformally	soft	modes	
[arXiv:1810.05219]
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vThe	conformally soft	limit	is	where	Δ➞ 1.		There	the	CB	
wavefunction is	pure	gauge.	arXiv:1609.00732



1810.05219

12/05/18 SGP	@	NORTHEASTERN 52

AG
µ;a ⌘ lim

�!1
A�,±

µ;a = @µ↵
1
a ↵1

a = �@aq ·X
q ·X

Alog,±
µ;a ⌘ lim

�!1
@�

⇣
A�,±

µ;a + Ã2��,±
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v Donnay et	al.	identify	a	logarithmic	mode	as	its	symplectic partner
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Final	Thoughts

v This	conformally soft	phase	space	analysis	/	augmentation	is	the	analog	of	
what	started	this	story	at	null	infinity.

vIn	addition	to	learning	more	about	the	IR	description	as	a	side	effect	of	running	
into	issues	with	contact-term	two	point	functions	(with	shadows	as	a	way	out)…

v…the	completeness	of	the	conformal	basis	is	needed	to	justify	an	effective	
`fixed- Δ hyperbolic	slicing’		in	current	attempts	to	connect	more	with	the	
standard	AdS3/CFT2	dictionary.
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Final	Thoughts
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Final	Thoughts

rµFµ⌫ = e2j⌫
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v The	conformal	basis	solutions	are	homogeneous	under	τ➞ λ τ,	
with	dilation	weight	corresponding	to	their	principal	series	weight		


