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This note computes the highest-weight transform of the color-ordered four point tree level MHV
amplitude.

I. CONVENTIONS

The main result of [1] was an expression for the scatter-
ing amplitude of SL(2,C) highest-weight states in terms
of an integral transform acting on the S-matrix elements
in the standard plane wave basis:
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Here G� is a bulk-to boundary propagator of weight �,
with (y, z, z̄) Poincaré coordinates on the H3 parameter-
izing the on-shell momentum space hyperboloid of the
asymptotic states
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and (w, w̄) the conformal S2 coordinates of a reference
null direction
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In these coordinates G� then takes the form:
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I.1. Massless Limit

In terms of plane waves, the highest weight states being
scattered in Ã can be written as:
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In the y ! 0 limit G� behaves as:

G�(y, z, z̄;w, w̄) ⇠ Cy2���2(z � w) +
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|z � w|2� + ... (I.4)

where the constant C can be computed by matching the
area integral on the S2 as shown in the appendix of [2].
As in [2] and the appendix of [1] the weight will take
values on a contour � = a + i�. Note that while the
real power of the mass scaling is the same for both terms
when a = 1, the imaginary parts of the exponent di↵er
(ie 2�� = �̄).

The next step is to do the momentum space convolu-
tion. We take ! ⌘ m

2y fixed in the y ! 0 limit. Then

the contribution of the first term in the y expansion to
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where we have used the m ! 0 limit to reduce p to a
massless four momentum and also to motivate doing the
integral of the expansion in small y, since here we are
considering it as an expansion in small m with ! fixed.
The second term will produce a similar contribution with
a power of m��2. Here we will assume Re[�] is slightly
greater than one to motivate picking the first term in
the y ! 0 expansion, after an overall mass-dependent
rescaling, as the limit of the massive transform for m = 0
states.
The � profiles resulting from convolving with either

term in (I.4) are highest-weight solutions. The first term
has the advantage of being local on the S2; ie the refer-
ence direction with respect to which the state is highest
weight is the same as the direction of the null momen-
tum of the particle. Meanwhile the remaining integral of
the transform in the radial direction on the momentum
space hyperboloid is converted in this limit to a Mellin
transform of the energy. Once we have motivated the
Mellin transformed state in this manner, we will take the
limit where the real part of the contour returns to a = 1,
which will be convenient for formal manipulations to ex-
press the distributional nature of the dependence on the
imaginary parts of the weights.
For example acting directly on the plane wave creation

and annhiliation operators to define:
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gives an inner product

h0|a�0(q̂0)a†�(q̂)|0i = 2(2⇡)4�(�� �0)�(2)(q̂ � q̂0) (I.7)

after using the change of variables u = ln! to write
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which relies on the fact that ! is real and positive and in
particular on the real part of the power of ! appearing
in the integrand.
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Note that (I.6) matches the highest weight transform
for Re[�] = 1. The Mellin transformed states are or-
thogonal for di↵erent weights and directions. Through
this transform we have exchanged energies for weights
while the direction on the sphere is the same as the di-
rection of the four momenta [4] (see footnote 9 of [5] for
an extended-BMS motivation for scattering Rindler en-
ergy eigenstates).

II. COMPUTATION

Note that the Mellin transformed states are those ap-
pearing in [2] and in [3]. With the perspective of [1] we
will be transforming the amplitude directly rather than
foliating Minkowski space (see section IV for a comment
on the connection between the foliation perspective and
our transform point of view). Noticing (I.5) is equiv-
alent to a weighted integral over all energies for parti-
cle momenta parallel to a reference null four vector, we
can define the massless analog of the transform in [1],
converting from plane wave to highest weight scattering
amplitudes as:
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where the particle momenta on the right hand side have
the form pµk = !kq

µ(wk, w̄k) for q as in (I.2). This am-
plitude is a multiple Mellin transform of the plane wave
one. Note the Mellin transforms are of the energies not
the Mandelstam invariants.

For the scalar case, such a convolution gave highest
weight states of weight 1+i�. We will see that the energy
dependence of the stripped amplitude naturally shifts the
real parts of the weights of the fields appearing in the
highest weight amplitude in a helicity-dependent manner
as is also suggested by footnote 9 of [5].

We will now look at the structure for the tree level
color-ordered n-point MHV amplitude. The Parke-
Taylor formula for the delta-function stripped tree level
amplitude gives:

A =
hiji4

h12ih23i...hn1i (II.2)

for all + except for i, j � helicity in the all-out conven-
tion. In our convention for coordinates on the celestial
sphere:

hiji = 2
p
!i!j(wi � wj) (II.3)

thus the energy dependence factors out of the delta-
function stripped amplitude and plays the role of shift-
ing the weight of the highest-weight states that appear
in the Mellin transform, in accord with the dimension of
the field. Meanwhile the holomorphic vs antiholomorphic
spinors that would appear in the anti-MHV amplitudes
give the spin dependence of CFT-like correlators on the

celestial S2, as consistent from the 4D scattering perspec-
tive, with little group scaling.
Before specializing to the 4 point case, we point out

one feature present in all MHV tree level amplitudes. If
we start to compute the transformed amplitude
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by first factoring out the overall scale of the energies (ie
fix

P
!k = s) we are left with
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where the measure from the simplex integral contributes
dssn�1, the Parke-Taylor formula gives an overall energy
scaling of s4�n, the four dimensional delta function gives
s�4, and the Mellin transform integrand gives si

P
�k .

Combining these contributions we see from (I.8) that the
transformed amplitude, for any number of scatterers n,
has delta function support on the locus in weight space
where the sum of the imaginary parts is zero.
We will now consider 2 ! 2 scattering in the crossed

configuration with Parke-Taylor amplitude
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h23ih34ih41i (II.6)

the goal is to compute
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Here we use conjugate i� weights for in versus outgoing
states so the support will be on �1+�2��3��4 = 0. We
make the choice !k = s�k where

P
�k = 2, as convenient

for 2 ! 2 scattering.
Shifting coordinates so that wi = zi�z2, again for con-

venience, and writing the argument of the delta function
in terms of the q(w, w̄) of (I.2) one finds as an interme-
diate result the following expression
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where we have used the p0tot + p3tot constraint combined
with

P
�k = 2 to see that �1 + �2 = �3 + �4 = 1. The

p1tot, p
2
tot delta function has support on the solution:

�1 =
z23z̄24 � z̄23z24
z34z̄12 � z̄34z12

(II.9)

�3 =
z24z̄12 � z̄24z12
z34z̄12 � z̄34z12

(II.10)
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One must check that these are saturated within the range
of integration for �k, which places constraints on the po-
sitions. Alternatively, one could take the point of view
that whatever functional form of the answer we get will
then be evaluated at points such that these conditions are
met, which ultimately reduce to allowed kinematic con-
figurations for 2 ! 2 massless scattering. The Jacobian
from this delta function gives a factor of i

2(z12z̄34�z̄12z34)

where we will suppress a potential sign that comes from
evaluating the absolute value.

At these values of �k the argument of the remaining
delta function can be written as

�1|z12|2 + �3

⇥
|z24|2 � |z23|2

⇤
� |z24|2 =

i det{q1, q2, q3, q4}
4(z12z̄34 � z̄12z34)

(II.11)

where the determinant is of a matrix with each row one
of the reference null momenta of the form (I.2) for each
scatter. The i(z12z̄34�z̄12z34) dependent Jacobian is thus
seen to cancel between the two delta functions leaving us
at this point with an expression of the form:

Ã = �(2⇡)�(�1 + �2 � �3 � �4)
z312

z23z34z14
⇥�1�i�1

1 (1� �1)
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3 (1� �3)
�1+i�4

⇥�(det{q1, q2, q3, q4})

(II.12)

where �1 and �3 are evaluated at (II.9) and (II.10).
At this stage it is beneficial to reflect on the role the

two remaining delta functions play. In order to have an
allowed 2 ! 2 scattering configuration in flat space the
signed four momenta must sum to zero. This means that
the reference vectors must form the edges of a closed
null polygon in R4. Thus, these four vectors are not
linearly independent. The vanishing of the determinant
appearing here is precisely that statement. In the Mellin
transform, we are performing a weighted integral over the
moduli of possible lengths for four null vectors pointing
in assigned directions to form a closed polygon. Now be-
cause of the dilation symmetry of the property of whether
or not a polygon closes, once any such solution exists for
given ratio of edge lengths, any uniform rescaling of the
edges will also result in an allowed closed null polygon.
This is the content of the first delta function where, by
the change of variables in (I.8) and the choice of contour
for the complex weights, we get a delta function for the
signed sum of the imaginary parts of the weights from
the dilation mode integral as shown in (II.5) to appear
in any tree level MHV amplitude.

With these delta functions appearing in the trans-
formed amplitude, it is natural to formally consider scat-
tering smeared over the imaginary weights and positions
on the celestial sphere, in a manner such that the delta
functions then restrict the overlap profiles to the kine-
matically allowed configurations.

We will now write the second delta function in terms
of conformal cross ratios. Using the conventions of Di
Francesco et al (5.27) for the variable naming we let

⌘ =
z12z34
z13z24

(II.13)

in terms of which

det{q1, q2, q3, q4} = 8|z13|2|z24|2Im[⌘]. (II.14)

While |z13|2|z24|2 can go to zero, this only occurs at sin-
gular configurations of the zi. In the following we will
consider the amplitudes of interest to be those smeared
near the support of the locus Im[⌘] = 0 ie the single cross
ratio in the 2D conformal theory is real.
We now want to simplify
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4
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(II.15)
into the form of a standard 4 point function with weight
dependent factors of zij and z̄ij times some function of ⌘
which we see has support only for real ⌘. This restriction
to real ⌘ will be used in this simplification as it gives us
relations like

z12z̄24
z̄12z24

=
z13z̄34
z̄13z34

(II.16)

from ⌘ = ⌘̄. After such simplifications we find
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(II.17)
where the holomorphic and antiholomorphic weights are
given by:

h1 = � i
2�1 h̄1 = 1� i

2�1

h2 = � i
2�2 h̄2 = 1� i

2�2

h3 = 1 + i
2�3 h̄3 = i

2�3

h4 = 1 + i
2�4 h̄4 = i

2�4

(II.18)

as consistent with footnote 9 of [5], and h = h1 + h2 +
h3 + h4, h̄ = h̄1 + h̄2 + h̄3 + h̄4.

III. CONCLUSIONS

In this note we have computed the highest-weight-
transformed amplitude for the particular example of a
4 point tree level color-ordered 2 ! 2 MHV scattering
process.
Here, as in [1], the space of allowed kinematic config-

urations for on-shell 4D scattering plays a crucial role in
these small-n computations, where Lorentz invariance –
as manifested by global SL(2,C) transformations of the
coordinates on the celestial sphere – dictate the CFT-
correlator-like structure.
The motivation for transforming amplitudes to a high-

est weight basis comes from recent work by Strominger
et al demonstrating that the asymptotic symmetry group
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of gravity in asymptotically flat spacetimes can be ex-
tended to include superrotations [5] whose Ward iden-
tities correspond to a Virasoro symmetry on the celes-
tial sphere. Recently a stress tensor for this e↵ective 2D
CFT in terms of the boundary metric at null infinity was
proposed [6]. The hope is that what amounts to ma-
nipulations of Lorentz invariance in this note and [1] will
become a much richer story once one couples to gravity.

It is interesting to note that the transformations which
lead to these highest weight amplitudes convolve plane
wave amplitudes at all energies. While at first it may
seem like a detriment, since the scattering amplitudes
computable from a low energy e↵ective theory would be
insu�cient, there is a curious notion that if we were able
to one day work out a holographic description of scat-
tering in asymptotically flat spacetimes in terms of a 2D
CFT, the CFT description would then tell us some prop-
erties of the behavior of the amplitudes at high energies
we might otherwise be unable to probe.

IV. COMMENTS

The following are a few side comments related to what
has been described in this note. It is worthwhile to com-
pare the spacetime foliation and S-matrix transform ap-
proaches to highest weight scattering. Since the trans-
form depends on the amplitude at all energies, a crucial
part of it is the momentum conserving delta function. If
we write

(2⇡)4�4(
X

pk) =

Z
d4xeix·

P
pk (IV.1)

the Mellin transform will act on both the stripped part of
the amplitude and this factor, where in the simplest cases
– like MHV amplitudes – the e↵ect of the stripped am-
plitude is to shift the weight. Then since highest weight
states have the form

�±
�,m=0(X

µ;w, w̄) =
1

(�Xµqµ ⌥ i✏)�
. (IV.2)

the foliation of Minkowski spacetime in, for instance, the
forward lightcone of the origin turns the integral over the
H3 length scale (ie x2 = �`2) into something that fac-
tors out of what then looks like a convolution of bulk to

boundary propagators on a position-space slice (ie d3xH3

from the plane wave expansion of the momentum con-
serving delta function). This is just one trick for working
backwards from the momentum space amplitude to a po-
sition space expression. More conventionally, one would
start by just defining the highest weight scattering pro-
files in position space and compute the amplitude for
scattering between them directly.
It may be interesting down the road to consider the

e↵ect of the second term in (I.4), since it is curious how
for a contour at Re[�] = 1 both terms appear with the
same real part for the power of mass. And while the first
term is convenient for localizing integrals on the S2 the
smearing associated with second one will allow a CFT
2-point function overlap (like that shown for the massive
case in the Appendix to [1]) in addition to the contact
term in the Klein-Gordon norm. The contact term cor-
responds to the fact that a free massless particle will
enter and leave traveling in the same direction while the
second term would smear this profile so that these alter-
nate highest weight states overlap at separated points as
well, with the expected analytic behavior on the S2 com-
ing from global conformal symmetry arguments. The
tradeo↵ is one between having simpler mode orthogonal-
ity relations and amplitude transform expressions in the
Mellin case, versus being able to avoiding trivial results
at low point amplitudes due to the kinematic restrictions
for massless scattering when there is no such smearing.
Leaving m small but nonzero would avoid the issue of
not being able to scale out the same power of the mass
in both terms, however if one takes this route they should
be wary of the order of limits in taking m small to mo-
tivate picking out the small y behavior of G� and then
integrating this behavior over y, using the small mass to
suppress the integrals of other terms in the y expansion.
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