4 pt in $2+1$

Sabrina Gonzalez Pasterski

(Dated: July 30, 2017)

Abstract

This note considers the four point function of four massless fields in a $2+1$ dimensional Massive-massless-massless cubic theory. I show that much of the work in $3+1$ carries over straightforwardly (as if restricting to the celestial circle as far as the kinematics is concerned). The feature allowing a conformal block decomposition is that the four point function in 3 dimensions in a non-scale invariant theory does not over-constrain the Mellin transform. Unitarity in $2+1$ follows from the change of basis for a theory that is unitary in momentum space, while the conformal block decomposition should be used to reveal features of the dual picture.

I. FROM $\mathbf{3 + 1}$ TO $\mathbf{2 + 1}$

In $2+1$ dimensions a null momentum can be parameterized by

$$
\begin{equation*}
p^{\mu}=\omega\left(1+z^{2}, 2 z, 1-z^{2}\right) \tag{I.1}
\end{equation*}
$$

where $z \in \mathbb{R}$. For four massless external momenta, the delta function coming from momentum conservation has the form:

$$
\begin{align*}
\delta^{(3)}\left(p_{1}+p_{2}-p_{3}\right. & \left.-p_{4}\right)=\frac{1}{4\left|z_{14} z_{13} z_{34}\right|} \delta\left(\omega_{1}+\omega_{2} \frac{z_{23} z_{24}}{z_{13} z_{14}}\right) \\
& \times \delta\left(\omega_{3}-\omega_{2} \frac{z_{12} z_{24}}{z_{13} z_{34}}\right) \delta\left(\omega_{4}+\omega_{2} \frac{z_{12} z_{23}}{z_{14} z_{34}}\right) . \tag{I.2}
\end{align*}
$$

We get some nice intuition for the above result when we consider setting $z_{i}=\bar{z}_{i}$ in the $3+1$ four point Mellin paper, and removing the delta function for the real cross ratios since we are in one dimension less and on a locus where what would be the reality constraint of the cross ratios is already satisfied. Note that aside from the measure, the values of $\frac{\omega_{i}}{\omega_{2}}$ can be directly compared to 4.2 in the Mellin paper and agree on the $z_{i}=\bar{z}_{i}$ locus. Note also that the $12 \leftrightarrow 34$ channel corresponds to $x=\frac{z_{12} z_{34}}{z_{13} z_{2}}>1$ as can be seen by demanding the localized ω_{i} be positive and noting that for instance $\operatorname{sgn}\left(\frac{\omega_{3}}{\omega_{2}}\right)=\operatorname{sgn}\left(\frac{z_{12} z_{24}}{z_{13} z_{34}}\right)=\operatorname{sgn}\left(\frac{z_{12} z_{34}}{z_{13} z_{24}}\right)=\operatorname{sgn}(x)$.

For a theory that is not scale invariant, one expects that the Mellin transform of a 4pt function will localize 3 of the frequency integrals. Having a massive intermediate propagator in a three point theory then gives hope for the final integral to be finite.

If I am considering charged massless scalars, then a $g \phi \varphi^{*} \varphi$ interaction can be set up to have only s and t channels. The desired amplitude is proportional to

$$
\begin{equation*}
\mathcal{A} \equiv g^{2}\left[\frac{1}{\left(p_{1}+p_{2}\right)^{2}+M^{2}}+\frac{1}{\left(p_{1}-p_{3}\right)^{2}+M^{2}}\right] \delta^{(3)}\left(p_{1}+p_{2}-p_{3}-p_{4}\right) \tag{I.3}
\end{equation*}
$$

Then

$$
\begin{align*}
\tilde{\mathcal{A}} & \equiv \prod_{i=1}^{4} \int d \omega_{i} \omega_{i}^{-\frac{1}{2}+i \lambda_{i}} \mathcal{A} \\
& =-\frac{2^{-2-i \sum \lambda_{i}} \pi}{M^{3-i \sum \lambda_{i}}} \operatorname{sech}\left(\frac{\pi}{2} \sum \lambda_{i}\right) \frac{g^{2}}{\left|z_{14} z_{13} z_{34}\right|} \theta\left(\frac{z_{12} z_{34}}{z_{13} z_{24}}-1\right) \tag{I.4}\\
& \times\left(\frac{z_{12} z_{23} z_{24}}{z_{14}}\right)^{\frac{1}{2}-\frac{i}{2} \sum \lambda_{i}}\left[\left(\frac{z_{12}}{z_{13}}\right)^{\frac{1}{2}-\frac{i}{2} \sum \lambda_{i}}+\left(-\frac{z_{24}}{z_{34}}\right)^{\frac{1}{2}-\frac{i}{2} \sum \lambda_{i}}\right] \\
& \times\left(-\frac{z_{23} z_{24}}{z_{13} z_{14}}\right)^{-\frac{1}{2}+i \lambda_{1}}\left(\frac{z_{12} z_{24}}{z_{13} z_{34}}\right)^{-\frac{1}{2}+i \lambda_{3}}\left(-\frac{z_{12} z_{23}}{z_{14} z_{34}}\right)^{-\frac{1}{2}+i \lambda_{4}}
\end{align*}
$$

What then remains at this point is to find a principal series (or otherwise) decomposition of functions of the form $x^{a}(1-x)^{-\frac{1}{2}\left(1-\Delta_{12}+\Delta_{34}\right)}$ a la (II.2), much like the author
and S.H. Shao had attempted in the higher dimensional case, but now with the first hurdle of removing any singularity via shadows taken care of.

