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I arrive at the Schrödinger Equation given a particular form for probabilities in phase space.

In this paper, I explore what happens when the proba-
bility distribution for particles in phase space arises from:
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for some complex  (x, t), such that expectation values
of classical observables are found by integrating over
this function: hf(x, p)i =

RR
f(x, p)'(x, p, t)dxdp. Here

“ + c.c.” means that the complex conjugate is added.
Equation 1 forces ' to be real, but allows it to be nega-
tive. It is completely specified by  (x, t), since  ̃(p, t) is
defined as the Fourier transform of  (x, t):
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To get some intuition for how ' relates to a probability
distribution, notice that:
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�1 '(x, p, t)dp = | (x, t)|2
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would be the same definitions for the probability distri-
butions in x and p if  (x, t) were taken to be the wave
function from quantum mechanics. The integral over all
x and p is defined to be normalized for all time, and '
approaches zero as x, p ! ±1.

My “Hamilton’s Equations of Motion” paper postu-
lated that ⇢̇ = 0 in phase space for the Hamiltonian:
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While Equation 1 gives:
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The following calculations explore the consequence of re-
stricting
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⇢̇dp = 0. Using integration by parts:
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since the boundary term is zero. Similarly,
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These relations cause the ṗ@
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' term to vanish when in-
tegrated over p. The first two terms in Equation 5 yield:
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If P(x, t) = P(x), so that  (x, t) =  (x)eif(t) for some
time-dependent phase, then  ⇤@
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constant. Using the limit that  ! 0 for x ! ±1 means
this constant is zero:  ⇤@

x

 is real. An arbitrary  (x)
can be written as  = A(x)eig(x) for some real functions
A(x) and g(x):
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so g0(x) = 0 and  (x) is real up to a constant phase.
Next, consider taking the expectation value of H(x, p)

as a function of x by integrating over p:
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which for the time-independent case becomes:
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There will be some  
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for which:
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From Equation 13, these eigenfunctions  
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away from  
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= 0, and continue to satisfy Equation 14
if restricted to having @2
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If we restrict  to linear combinations of  
n

, we see that
the Schrödinger Equation is obeyed:
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