The Schrödinger Equation and Phase Space

Sabrina Gonzalez Pasterski

(Dated: July 30, 2013)
I arrive at the Schrödinger Equation given a particular form for probabilities in phase space.

In this paper, I explore what happens when the probability distribution for particles in phase space arises from:

$$
\begin{equation*}
\varphi(x, p, t)=\frac{1}{2 \sqrt{2 \pi \hbar}}\left[\Psi^{*}(x, t) \tilde{\Psi}(p, t) e^{\frac{i p x}{\hbar}}+c . c .\right] \tag{1}
\end{equation*}
$$

for some complex $\Psi(x, t)$, such that expectation values of classical observables are found by integrating over this function: $\langle f(x, p)\rangle=\iint f(x, p) \varphi(x, p, t) \mathrm{d} x \mathrm{~d} p$. Here " + c.c." means that the complex conjugate is added. Equation 1 forces φ to be real, but allows it to be negative. It is completely specified by $\Psi(x, t)$, since $\tilde{\Psi}(p, t)$ is defined as the Fourier transform of $\Psi(x, t)$:

$$
\begin{equation*}
\tilde{\Psi}(p, t)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{+\infty} \Psi(y, t) e^{\frac{-i p y}{\hbar}} \mathrm{~d} y \tag{2}
\end{equation*}
$$

To get some intuition for how φ relates to a probability distribution, notice that:

$$
\begin{align*}
& \mathbb{P}(x, t)=\int_{-\infty}^{+\infty} \varphi(x, p, t) \mathrm{d} p=|\Psi(x, t)|^{2} \\
& \mathbb{P}(p, t)=\int_{-\infty}^{+\infty} \varphi(x, p, t) \mathrm{d} x=|\tilde{\Psi}(p, t)|^{2} \tag{3}
\end{align*}
$$

would be the same definitions for the probability distributions in x and p if $\Psi(x, t)$ were taken to be the wave function from quantum mechanics. The integral over all x and p is defined to be normalized for all time, and φ approaches zero as $x, p \rightarrow \pm \infty$.

My "Hamilton's Equations of Motion" paper postulated that $\dot{\rho}=0$ in phase space for the Hamiltonian:

$$
\begin{equation*}
H(x, p)=\frac{p^{2}}{2 m}+V(x) \tag{4}
\end{equation*}
$$

This yields:

$$
\begin{align*}
0 & =\partial_{t} \rho+\dot{x} \partial_{x} \rho+\dot{p} \partial_{p} \rho \\
& =\partial_{t} \rho+\frac{p}{m} \partial_{x} \rho-V^{\prime}(x) \partial_{p} \rho . \tag{5}
\end{align*}
$$

While Equation 1 gives:

$$
\begin{align*}
\dot{\varphi}=\frac{1}{2 \sqrt{2 \pi \hbar}} e^{\frac{i p x}{\hbar}}\left[\frac{\partial \Psi^{*}}{\partial t} \tilde{\Psi}\right. & +\Psi^{*} \frac{\partial \tilde{\Psi}}{\partial t}+\frac{p}{m}\left(\frac{\partial \Psi^{*}}{\partial x} \tilde{\Psi}+\frac{i p}{\hbar} \Psi^{*} \tilde{\Psi}\right) \tag{6}\\
& \left.-V^{\prime}(x)\left(\Psi^{*} \frac{\partial \tilde{\Psi}}{\partial p}+\frac{i x}{\hbar} \Psi^{*} \tilde{\Psi}\right)\right]+c . c .
\end{align*}
$$

The following calculations explore the consequence of restricting $\int \dot{\varphi} \mathrm{d} p=\int \dot{\rho} \mathrm{d} p=0$. Using integration by parts:

$$
\begin{align*}
p \tilde{\Psi}(p, t) & =\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{+\infty} p \Psi(y, t) e^{\frac{-i p y}{\hbar}} \mathrm{~d} y \\
& =\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{+\infty} \Psi(y, t) \frac{-\hbar}{i} \partial_{y}\left[e^{\frac{-i p y}{\hbar}}\right] d y \tag{7}\\
& =\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{+\infty} \frac{\hbar}{i} \partial_{y}[\Psi(y, t)] e^{-\frac{-i p y}{\hbar}} \mathrm{~d} y
\end{align*}
$$

since the boundary term is zero. Similarly,

$$
\begin{equation*}
\partial_{p} \tilde{\Psi}(p, t)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{+\infty}\left[\frac{-i y}{\hbar}\right] \Psi(y, t) e^{\frac{-i p y}{\hbar}} \mathrm{~d} y . \tag{8}
\end{equation*}
$$

These relations cause the $\dot{p} \partial_{p} \varphi$ term to vanish when integrated over p. The first two terms in Equation 5 yield:

$$
\begin{equation*}
\partial_{t}\left[\Psi^{*} \Psi\right]=-\partial_{x}\left[\frac{\hbar}{2 m i}\left(\Psi^{*} \partial_{x} \Psi-\Psi \partial_{x} \Psi^{*}\right)\right] . \tag{9}
\end{equation*}
$$

If $\mathbb{P}(x, t)=\mathbb{P}(x)$, so that $\Psi(x, t)=\psi(x) e^{i f(t)}$ for some time-dependent phase, then $\psi^{*} \partial_{x} \psi-\psi \partial_{x} \psi^{*}$ must be a constant. Using the limit that $\psi \rightarrow 0$ for $x \rightarrow \pm \infty$ means this constant is zero: $\psi^{*} \partial_{x} \psi$ is real. An arbitrary $\psi(x)$ can be written as $\psi=A(x) e^{i g(x)}$ for some real functions $A(x)$ and $g(x)$:

$$
\begin{align*}
0 & =\operatorname{Im}\left[\psi^{*} \partial_{x} \psi\right] \\
& =\operatorname{Im}\left[A(x)\left(A^{\prime}(x)+i A(x) g^{\prime}(x)\right)\right] \tag{10}
\end{align*}
$$

so $g^{\prime}(x)=0$ and $\psi(x)$ is real up to a constant phase.
Next, consider taking the expectation value of $H(x, p)$ as a function of x by integrating over p :

$$
\begin{equation*}
\int_{-\infty}^{+\infty} H(x, p) \varphi \mathrm{d} p=\frac{1}{2}\left[\Psi^{*}\left(\frac{-\hbar^{2}}{2 m} \partial_{x}^{2}+V(x)\right) \Psi+c . c .\right] \tag{11}
\end{equation*}
$$

which for the time-independent case becomes:

$$
\begin{equation*}
\int_{-\infty}^{+\infty} H(x, p) \varphi \mathrm{d} p=\psi\left(\frac{-\hbar^{2}}{2 m} \partial_{x}^{2}+V(x)\right) \psi \tag{12}
\end{equation*}
$$

There will be some ψ_{n} for which:

$$
\begin{equation*}
\int_{-\infty}^{+\infty} H(x, p) \varphi_{n} \mathrm{~d} p=E_{n} \mathbb{P}_{n}(x) \tag{13}
\end{equation*}
$$

From Equation 13, these eigenfunctions ψ_{n} satisfy the differential equation:

$$
\begin{equation*}
\frac{-\hbar^{2}}{2 m} \partial_{x}^{2} \psi_{n}+V(x) \psi_{n}=E_{n} \psi_{n} \tag{14}
\end{equation*}
$$

away from $\psi_{n}=0$, and continue to satisfy Equation 14 if restricted to having $\partial_{x}^{2} \psi_{n}=0$ when $\psi_{n}=0$.

Letting $\Psi_{n}(x, t)=\psi_{n}(x) e^{i f_{n}(t)}$, plug $\Psi=\Psi_{1}+\Psi_{2}$ into Equation 9:

$$
\begin{align*}
\frac{1}{i \hbar}\left[\Psi^{*} \frac{-\hbar^{2}}{2 m} \partial_{x}^{2} \Psi\right]+c . c . & =-2 \psi_{1} \psi_{2}\left[f_{1}^{\prime}-f_{2}^{\prime}\right] \sin \left(f_{1}-f_{2}\right) \tag{15}\\
& =\frac{2}{\hbar} \psi_{1} \psi_{2}\left[E_{1}-E_{2}\right] \sin \left(f_{1}-f_{2}\right)
\end{align*}
$$

If a time translation of Ψ_{n} is still a solution, let $\Psi_{2}(x, t)=$ $\psi_{1}(x) e^{i f_{1}(t+\Delta t)}$. Since $E_{2}=E_{1}$, and $f_{1}(t)-f_{1}(t+\Delta t)=$ $n \pi$ for $n \in \mathbb{Z}$ would not hold for all Δt unless f_{1} is constant, we must have $f_{1}^{\prime}(t)=f_{1}^{\prime}(t+\Delta t)$: the phase is linear in time. Equation 15 is consistent with $f_{n}(t)=-E_{n} t / \hbar$ up to a constant phase. This gives:

$$
\begin{equation*}
E_{n} \Psi_{n}=i \hbar \partial_{t} \Psi_{n} \tag{16}
\end{equation*}
$$

If we restrict Ψ to linear combinations of Ψ_{n}, we see that the Schrödinger Equation is obeyed:

$$
\begin{equation*}
i \hbar \partial_{t} \Psi=\frac{-\hbar^{2}}{2 m} \partial_{x}^{2} \Psi+V(x) \Psi \tag{17}
\end{equation*}
$$

