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I arrive at the Schrodinger Equation given a particular form for probabilities in phase space.

In this paper, I explore what happens when the proba-
bility distribution for particles in phase space arises from:
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for some complex ¥(z,t), such that expectation values
of classical observables are found by integrating over
this function: (f(x = [[ f(z,p)e(z,p,t)dzdp. Here
“ 4+ c.c.” means that the complex conjugate is added.
Equation 1 forces ¢ to be real, but allows it to be nega-
tive. It is completely specified by ¥(x,t), since U(p,t) is
defined as the Fourier transform of \I/(gr:7 t):
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To get some intuition for how o relates to a probability
distribution, notice that:
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would be the same definitions for the probability distri-
butions in x and p if U(z,t) were taken to be the wave
function from quantum mechanics. The integral over all
z and p is defined to be normalized for all time, and ¢
approaches zero as x,p — £00.

My “Hamilton’s Equations of Motion” paper postu-
lated that p = 0 in phase space for the Hamiltonian:
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This yields:

0 =0ip+ iBup+ popp )
=0ip+ L0wp = V'(2)0pp.

While Equation 1 gives:
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The following calculations explore the consequence of re-
stricting [ ¢dp = [ pdp = 0. Using integration by parts:
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since the boundary term is zero. Snnilarly7
U (p,t) = A= [TZ[FHU(y, t)e 7 dy. (8)

These relations cause the pd,¢ term to vanish when in-
tegrated over p. The first two terms in Equation 5 yield:
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If P(z,t) = P(x), so that ¥(x,t) = ¢(x)e’’® for some
time-dependent phase, then ¢*d,1¢ — ¥0,1)* must be a
constant. Using the limit that ¢» — 0 for x — 400 means
this constant is zero: ©¥*0,% is real. An arbitrary ¢ (z)
can be written as 1) = A(x)e®) for some real functions

A(z) and g(x):
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so ¢'(x) =0 and ¥ (z) is real up to a constant phase.
Next, consider taking the expectation value of H(z,p)

as a function of = by integrating over p:
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which for the time-independent case becomes:
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There will be some ,, for which:
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From Equation 13, these eigenfunctions 1, satisfy the
differential equation:
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away from 1, = 0, and continue to satisfy Equation 14
if restricted to having 92t,, = 0 when 1,, = 0.

Letting W,,(z,t) = 9, (x)e/»®) | plug ¥ = ¥ + U, into
Equation 9:
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If a time translation of ¥, is still a solution, let ¥y (z,t) =
Py ()1 EHAD Since By = By, and fi(t) — f1(t+At) =
nm for n € Z would not hold for all At unless f; is con-
stant, we must have f{(t) = fi(t+At): the phase is linear
in time. Equation 15 is consistent with f,(t) = —E,t/h
up to a constant phase. This gives:

E, VU, = ihd, T, (16)

If we restrict ¥ to linear combinations of ¥,,, we see that
the Schrodinger Equation is obeyed:
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