The Schrödinger Equation and Phase Space

Sabrina Gonzalez Pasterski

(Dated: July 30, 2013)

I arrive at the Schrödinger Equation given a particular form for probabilities in phase space.

In this paper, I explore what happens when the probability distribution for particles in phase space arises from:

$$\varphi(x, p, t) = \frac{1}{2\sqrt{2\pi\hbar}} \left[\Psi^*(x, t) \tilde{\Psi}(p, t) e^{\frac{ipx}{\hbar}} + c.c. \right]$$
(1)

for some complex $\Psi(x,t)$, such that expectation values of classical observables are found by integrating over this function: $\langle f(x,p) \rangle = \iint f(x,p)\varphi(x,p,t) dxdp$. Here "+ c.c." means that the complex conjugate is added. Equation 1 forces φ to be real, but allows it to be negative. It is completely specified by $\Psi(x,t)$, since $\tilde{\Psi}(p,t)$ is defined as the Fourier transform of $\Psi(x,t)$:

$$\tilde{\Psi}(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \Psi(y,t) e^{\frac{-ipy}{\hbar}} \mathrm{d}y.$$
(2)

To get some intuition for how φ relates to a probability distribution, notice that:

$$\mathbb{P}(x,t) = \int_{-\infty}^{+\infty} \varphi(x,p,t) dp = |\Psi(x,t)|^2 \\ \mathbb{P}(p,t) = \int_{-\infty}^{+\infty} \varphi(x,p,t) dx = |\tilde{\Psi}(p,t)|^2$$
(3)

would be the same definitions for the probability distributions in x and p if $\Psi(x,t)$ were taken to be the wave function from quantum mechanics. The integral over all x and p is defined to be normalized for all time, and φ approaches zero as $x, p \to \pm \infty$.

My "Hamilton's Equations of Motion" paper postulated that $\dot{\rho} = 0$ in phase space for the Hamiltonian:

$$H(x,p) = \frac{p^2}{2m} + V(x).$$
 (4)

This yields:

$$\begin{array}{ll}
0 &= \partial_t \rho + \dot{x} \partial_x \rho + \dot{p} \partial_p \rho \\
&= \partial_t \rho + \frac{p}{m} \partial_x \rho - V'(x) \partial_p \rho.
\end{array}$$
(5)

While Equation 1 gives:

$$\dot{\varphi} = \frac{1}{2\sqrt{2\pi\hbar}} e^{\frac{ipx}{\hbar}} \left[\frac{\partial\Psi^*}{\partial t} \tilde{\Psi} + \Psi^* \frac{\partial\tilde{\Psi}}{\partial t} + \frac{p}{m} \left(\frac{\partial\Psi^*}{\partial x} \tilde{\Psi} + \frac{ip}{\hbar} \Psi^* \tilde{\Psi} \right) - V'(x) \left(\Psi^* \frac{\partial\tilde{\Psi}}{\partial p} + \frac{ix}{\hbar} \Psi^* \tilde{\Psi} \right) \right] + c.c.$$
(6)

The following calculations explore the consequence of restricting $\int \dot{\varphi} dp = \int \dot{\rho} dp = 0$. Using integration by parts:

$$p\tilde{\Psi}(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} p\Psi(y,t) e^{\frac{-ipy}{\hbar}} dy$$

$$= \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \Psi(y,t) \frac{-\hbar}{i} \partial_y [e^{\frac{-ipy}{\hbar}}] dy$$

$$= \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} \frac{\hbar}{i} \partial_y [\Psi(y,t)] e^{\frac{-ipy}{\hbar}} dy$$
 (7)

since the boundary term is zero. Similarly,

$$\partial_p \tilde{\Psi}(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{+\infty} [\frac{-iy}{\hbar}] \Psi(y,t) e^{\frac{-ipy}{\hbar}} dy.$$
(8)

These relations cause the $\dot{p}\partial_p\varphi$ term to vanish when integrated over p. The first two terms in Equation 5 yield:

$$\partial_t [\Psi^* \Psi] = -\partial_x [\frac{\hbar}{2mi} (\Psi^* \partial_x \Psi - \Psi \partial_x \Psi^*)].$$
(9)

If $\mathbb{P}(x,t) = \mathbb{P}(x)$, so that $\Psi(x,t) = \psi(x)e^{if(t)}$ for some time-dependent phase, then $\psi^*\partial_x\psi - \psi\partial_x\psi^*$ must be a constant. Using the limit that $\psi \to 0$ for $x \to \pm \infty$ means this constant is zero: $\psi^*\partial_x\psi$ is real. An arbitrary $\psi(x)$ can be written as $\psi = A(x)e^{ig(x)}$ for some real functions A(x) and q(x):

$$0 = \operatorname{Im}[\psi^* \partial_x \psi] = \operatorname{Im}[A(x)(A'(x) + iA(x)g'(x))]$$
(10)

so g'(x) = 0 and $\psi(x)$ is real up to a constant phase.

Next, consider taking the expectation value of H(x, p)as a function of x by integrating over p:

$$\int_{-\infty}^{+\infty} H(x,p)\varphi dp = \frac{1}{2} [\Psi^*(\frac{-\hbar^2}{2m}\partial_x^2 + V(x))\Psi + c.c.] \quad (11)$$

which for the time-independent case becomes:

$$\int_{-\infty}^{+\infty} H(x,p)\varphi dp = \psi(\frac{-\hbar^2}{2m}\partial_x^2 + V(x))\psi.$$
 (12)

There will be some ψ_n for which:

$$\int_{-\infty}^{+\infty} H(x,p)\varphi_n \mathrm{d}p = E_n \mathbb{P}_n(x).$$
(13)

From Equation 13, these eigenfunctions ψ_n satisfy the differential equation:

$$\frac{-\hbar^2}{2m}\partial_x^2\psi_n + V(x)\psi_n = E_n\psi_n \tag{14}$$

away from $\psi_n = 0$, and continue to satisfy Equation 14 if restricted to having $\partial_x^2 \psi_n = 0$ when $\psi_n = 0$.

Letting $\Psi_n(x,t) = \psi_n(x)e^{if_n(t)}$, plug $\Psi = \Psi_1 + \Psi_2$ into Equation 9:

$$\frac{1}{i\hbar} [\Psi^* \frac{-\hbar^2}{2m} \partial_x^2 \Psi] + c.c. = -2\psi_1 \psi_2 [f_1' - f_2'] \sin(f_1 - f_2) = \frac{2}{\hbar} \psi_1 \psi_2 [E_1 - E_2] \sin(f_1 - f_2)$$
(15)

If a time translation of Ψ_n is still a solution, let $\Psi_2(x,t) = \psi_1(x)e^{if_1(t+\Delta t)}$. Since $E_2 = E_1$, and $f_1(t) - f_1(t+\Delta t) = n\pi$ for $n \in \mathbb{Z}$ would not hold for all Δt unless f_1 is constant, we must have $f'_1(t) = f'_1(t+\Delta t)$: the phase is linear in time. Equation 15 is consistent with $f_n(t) = -E_n t/\hbar$ up to a constant phase. This gives:

$$E_n \Psi_n = i\hbar \partial_t \Psi_n \tag{16}$$

If we restrict Ψ to linear combinations of Ψ_n , we see that the Schrödinger Equation is obeyed:

$$i\hbar\partial_t\Psi = \frac{-\hbar^2}{2m}\partial_x^2\Psi + V(x)\Psi.$$
 (17)