Physics 211r: Problem Set 5

Due: May 4, 2016

Reading Assignment

- [1] S. W. Hawking, M. J. Perry and A. Strominger, "Soft Hair on Black Holes," arXiv:1601.00921 [hep-th].
- [2] E. E. Flanagan and D. A. Nichols, arXiv:1510.03386 [hep-th].
- [3] S. Pasterski, "Asymptotic Symmetries and Electromagnetic Memory," arXiv:1505.00716 [hep-th].
- [4] S. Pasterski, A. Strominger and A. Zhiboedov, "New Gravitational Memories," arXiv:1502.06120 [hep-th].
- [5] A. Strominger and A. Zhiboedov, "Gravitational Memory, BMS Supertranslations and Soft Theorems," JHEP **1601**, 086 (2016) doi:10.1007/JHEP01(2016)086 [arXiv:1411.5745 [hep-th]].
 - 1. In this problem, we will study the gravitational memory effect experienced by inertial observers due to supertranslations.
 - (a) Working in retarded Bondi coordinates, determine the 4-velocity of an inertial time-like observer (i.e. an observer travelling along a time-like geodesic) in the large-r limit. Determine the u and r components to order $\frac{1}{r}$ and the z and \overline{z} components to order $\frac{1}{r^2}$. Normalize the 4-velocity in the usual way $(v^{\mu}v_{\mu}=-1)$, and require that at $u=u_0$ the trajectory pass through the point $(r_0, z_0, \overline{z}_0)$ where $r_0 \gg u_0$.
 - (b) Now consider a nearby inertial observer who passes through the $(r_1, z_1, \overline{z}_1)$ at $u = u_0$, where $r_1 = r_0 + \delta r$ with $\delta r \ll r_0$. Determine the proper distance between the observers to leading order in δr .
 - (c) A burst of radiation of the form

$$T_{uu}^{M}(u, r, z, \overline{z}) = \frac{\mu}{4\pi r^{2}} \delta(u - u_{\text{rad}}) \delta^{2}(z - z_{\text{rad}}), \qquad u_{\text{rad}} > u_{0}, \qquad \frac{|u_{\text{rad}} - u_{0}|}{r_{0}} \ll 1, \quad (1)$$

passes the observers. Determine the change in proper distance between the observers as a result of the passage of this radiation.

(d) Find the supertranslation f that gives rise to the same change in proper distance.

2. Consider the Vaidya black hole created by a spherically symmetric null shockwave at v = 0. We define the horizon large gauge charge as

$$Q_{\varepsilon}^{\mathcal{H}} \equiv \frac{1}{e^2} \int_{\mathcal{H}^+} \varepsilon \left(*F \right) . \tag{2}$$

where \mathcal{H}^+ is the future of the horizon of the Vaidya black hole.

- (a) Using the constraints derived from Maxwell's equations on \mathcal{H} , rewrite $Q_{\varepsilon}^{\mathcal{H}}$ as an integral over \mathcal{H} and determine the soft and hard part of this charge. Write the soft charge explicitly in the (v, r, z, \overline{z}) coordinates.
- (b) Determine the symplectic form for the gauge fields on \mathcal{H} . Hint: You can use the symplectic form Ω_{Σ} that was derived in Problem Set 1 and set $\Sigma = \mathcal{H}$. Write it out explicitly in the (v, r, z, \overline{z}) coordinates.
- (c) By using the explicit forms of the charge and symplectic form derived in parts (a) and (b), show that $Q_{\varepsilon}^{\mathcal{H}}$ generates large gauge transformations on the horizon, i.e.

$$[Q_{\varepsilon}^{\mathcal{H}}, A_z|_{\mathcal{H}}] = i\partial_z \varepsilon . \tag{3}$$

3. Consider a Schwarzschild black hole with mass M perturbed by a null shockwave at $v=v_0$ described by the stress tensor

$$T_{vv} = \frac{1}{4\pi r^2} \left[\mu + \frac{1}{4} D^2 \left(D^2 + 2 \right) f \right] \delta \left(v - v_0 \right) - \frac{3M}{8\pi r^3} D^2 f \delta \left(v - v_0 \right) ,$$

$$T_{vA} = -\frac{3M}{8\pi r^2} D_A f \delta \left(v - v_0 \right) .$$
(4)

- (a) Solve the linearized Einstein's equations about the initial Schwarzschild solution in Bondi gauge. Assume that only the zero mode of the Bondi mass aspect on \mathcal{I}^- changes under this perturbation.
- (b) Show that the final black hole (after $v > v_0$) can be obtained instead by sending a spherically symmetric null shockwave with stress tensor

$$T_{vv} = \frac{\mu}{4\pi r^2} \delta \left(v - v_0 \right) \tag{5}$$

followed by an infinitesimal supertranslation.