Hamilton's Equations of Motion

Sabrina Gonzalez Pasterski

(Dated: July 14, 2013)

Abstract

I motivate Hamilton's equations of motion using a geometrical picture of contours in phase space. The following considers a single cartesian coordinate x with conjugate momentum p.

I. POSTULATES

1. There exists a function $H(x, p)$ which is constant along a particle's trajectory in phase space and is time-independent.
2. The momentum p is defined as $p=m \dot{x}$.
3. Motion within phase space is characterized by incompressible fluid flow, so that the phase space velocity is divergence-less: $\vec{\nabla} \cdot \vec{v}=0$.

FIG. 1. Illustration of contours of $H(x, p)$ in phase space.

II. DERIVATION

At any position on a contour of $H(x, p)$, the gradient:

$$
\begin{equation*}
\vec{\nabla} H=\frac{\partial H}{\partial x} \hat{x}+\frac{\partial H}{\partial p} \hat{p} \tag{1}
\end{equation*}
$$

points perpendicular to this contour. This is represented by the red arrow in Figure 1. I can define a vector $\vec{\eta}$ perpendicular to $\vec{\nabla} H$ in the (x, p)-plane:

$$
\begin{equation*}
\vec{\eta}=\frac{\partial H}{\partial p} \hat{x}-\frac{\partial H}{\partial x} \hat{p} \tag{2}
\end{equation*}
$$

represented by the blue arrow in Figure 1. Being perpendicular to the gradient, which is perpendicular to the contour, we find that $\vec{\eta}$ points along the contour of $H(x, p)$.

Since a particle's motion is restricted to contours of H by Postulate 1, its instantaneous velocity in phase space will be parallel to the contour it is on and, thus, $\vec{\eta}$. The magnitude of the velocity is not fixed; however, it can be
handled by multiplying $\vec{\eta}$ in Equation 2 by an unknown function $\alpha(x, p)$, so that:

$$
\begin{equation*}
\vec{v}=\dot{x} \hat{x}+\dot{p} \hat{p}=\alpha(x, p)\left[\frac{\partial H}{\partial p} \hat{x}-\frac{\partial H}{\partial x} \hat{p}\right] . \tag{3}
\end{equation*}
$$

From Postulate $2, \dot{x}=\frac{p}{m}$, so that we could eliminate $\alpha(x, p)$:

$$
\begin{equation*}
\vec{v}=\dot{x} \hat{x}+\dot{p} \hat{p}=\frac{p}{m}\left[\hat{x}-\frac{\frac{\partial H}{\partial x}}{\frac{\partial H}{\partial p}} \hat{p}\right] \tag{4}
\end{equation*}
$$

when $\frac{\partial H}{\partial p} \neq 0$. In what follows, I use the form of \vec{v} in Equation 3 and Postulate 2 to verify that α is a function of x and p that does not depend explicitly on time, since $\dot{x}=\frac{p}{m}$ sets the overall speed.

Using Postulate 3, the divergence of the phase space velocity field is zero, giving:

$$
\begin{align*}
\vec{\nabla} \cdot \vec{v} & =\frac{\partial \dot{x}}{\partial x}+\frac{\partial \dot{p}}{\partial p} \\
& =\frac{\partial \alpha}{\partial x} \frac{\partial H}{\partial p}-\frac{\partial \alpha}{\partial p} \frac{\partial H}{\partial x}=0 \tag{5}
\end{align*}
$$

This expression, which is equivalent to saying $\{\alpha, H\}=$ 0 , tells us that α is a constant of the motion using geometrical logic. It is equivalent to the statement that $\vec{\nabla} \alpha$ and $\vec{\nabla} H$ are parallel if both are nonzero since:

$$
\begin{align*}
\vec{\nabla} \alpha \times \vec{\nabla} H & =\left|\begin{array}{ccc}
\hat{x} & \hat{p} & \hat{\xi} \\
\frac{\partial \alpha}{\partial x} & \frac{\partial \alpha}{\partial p} & 0 \\
\frac{\partial H}{\partial x} & \frac{\partial H}{\partial p} & 0
\end{array}\right| \tag{6}\\
& =\left[\frac{\partial \alpha}{\partial x} \frac{\partial H}{\partial p}-\frac{\partial \alpha}{\partial p} \frac{\partial H}{\partial x}\right] \hat{\xi}=\overrightarrow{0}
\end{align*}
$$

where a third dimension ξ has been added for convenience which is perpendicular to the (x, p)-plane. If the gradients of $\alpha(x, p)$ and $H(x, p)$ are everywhere parallel, then the contours of $\alpha(x, p)$ and $H(x, p)$ will coincide since the contour of a function is at each point perpendicular to its gradient. A contour of H is thus also a contour of α. Since $\alpha(x, p)$ is constant along a particle's path, setting $\alpha=1$ amounts to rescaling the value of $H(x, p)$ on each contour, which does not change the implications of Postulate 1. Equation 3 thus gives us Hamilton's equations of motion:

$$
\begin{align*}
\dot{x} & =+\frac{\partial H}{\partial p} \tag{7}\\
\dot{p} & =-\frac{\partial H}{\partial x}
\end{align*}
$$

from which Postulate 2 gives us:

$$
\begin{equation*}
H(x, p)=\frac{p^{2}}{2 m}+V(x) \tag{8}
\end{equation*}
$$

for some function $V(x)$ interpreted as the potential.

