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I motivate Hamilton’s equations of motion using a geometrical picture of contours in phase space.
The following considers a single cartesian coordinate x with conjugate momentum p.

I. POSTULATES

1. There exists a function H(x,p) which is constant
along a particle’s trajectory in phase space and is
time-independent.

2. The momentum p is defined as p = mz.

3. Motion within phase space is characterized by in-
compressible fluid flow, so that the phase space ve-
locity is divergence-less: V - ¢ = 0.
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FIG. 1. Illustration of contours of H(z,p) in phase space.

II. DERIVATION

At any position on a contour of H(zx,p), the gradient:
VH = —& + —p (1)

points perpendicular to this contour. This is represented
by the red arrow in Figure 1. I can define a vector 77
perpendicular to VH in the (z, p)-plane:
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represented by the blue arrow in Figure 1. Being perpen-
dicular to the gradient, which is perpendicular to the con-
tour, we find that 77 points along the contour of H(z,p).

Since a particle’s motion is restricted to contours of H
by Postulate 1, its instantaneous velocity in phase space
will be parallel to the contour it is on and, thus, 77. The
magnitude of the velocity is not fixed; however, it can be

handled by multiplying 77 in Equation 2 by an unknown
function a(z,p), so that:
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From Postulate 2, # = £, so that we could eliminate
a(z, p):
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when %—IZ # 0. In what follows, I use the form of ¥ in
Equation 3 and Postulate 2 to verify that « is a function
of x and p that does not depend explicitly on time, since
i = £ sets the overall speed.

Using Postulate 3, the divergence of the phase space
velocity field is zero, giving:
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This expression, which is equivalent to saying {«, H} =
0, tells us that « is a constant of the motion using geo-
metrical logic. It is equivalent to the statement that Vo
and VH are parallel if both are nonzero since:
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where a third dimension £ has been added for convenience
which is perpendicular to the (x,p)-plane. If the gradi-
ents of a(x,p) and H(x,p) are everywhere parallel, then
the contours of a(x,p) and H(z,p) will coincide since
the contour of a function is at each point perpendicular
to its gradient. A contour of H is thus also a contour of c.
Since a(z,p) is constant along a particle’s path, setting
a = 1 amounts to rescaling the value of H(z,p) on each
contour, which does not change the implications of Pos-
tulate 1. Equation 3 thus gives us Hamilton’s equations
of motion:
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from which Postulate 2 gives us:
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H(w.p) = .+ V() (8)

for some function V(x) interpreted as the potential.
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