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In this paper, I show how probability densities associated with a Gaussian field can be expressed
in terms of the Boltzmann heat kernel. The N < 2 calculations are based off of the work of Arthur
Jaffe, while the proof of his postulate for general N is original.

In “Fields with a Gaussian Measure,” I found:
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Now, consider
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which can be thought of as the Hamiltonian for the sim-
ple harmonic oscillator with position coordinate scaled to
have unit mass, and frequency w = m. The spectrum is
mZT and the ground state is given by:
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For ¢ > 0, the Boltzmann integral kernel gives the evolu-
tion:
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For N =1, pi(z) = Qo(x)?. When N > 1, it is con-

venient to define C = 2mC so that C;; = e ™t=tl,
Then:
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Here, I will consider ¢; < ... < ty. For N = 2 explicitly
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gives an expression for p in terms of B:
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I can now find an expression for general N using induc-
tion. Writing Cp in blocks:
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where v = (e=™(n—t)  e=m{n—tn-1)) leads to an ex-
pression for the inverse:
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where 1 = 1—v"(Cy' ,v). Rather than inverting Cn_1,
my expression for py in terms of py_; will only need
the product (Cy' ,v). Because the inverse exists, it is
equivalent to finding & such that v = Cy_1£. Since the
last column of C_; is (e~™*~-1=%) 1), T find that:
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which gives:
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In terms of py_1, one thus finds:
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The expressions for N = 1 and N = 2 are both consistent
with the following expression for general N:

pn = Qo(21)Br,—t, (71, 22)Bry 1, (72, 3)... (13)
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where t; < ... < tyn.

T —1 17,.2 —2m(tn—tN_1) .2
Xy Cyiixn—1 + oy +e Jxd



	Gaussian Measures and the QM Oscillator
	Abstract


