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In this paper, I show how probability densities associated with a Gaussian field can be expressed

in terms of the Boltzmann heat kernel. The N  2 calculations are based o↵ of the work of Arthur

Ja↵e, while the proof of his postulate for general N is original.

In “Fields with a Gaussian Measure,” I found:
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which can be thought of as the Hamiltonian for the sim-
ple harmonic oscillator with position coordinate scaled to
have unit mass, and frequency ! = m. The spectrum is
mZ+ and the ground state is given by:

⌦
0

(x) =
⇣m
⇡

⌘
1/4

e�
mx

2

2 (3)

For t > 0, the Boltzmann integral kernel gives the evolu-
tion:
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For N = 1, ⇢t(x) = ⌦
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(x)2. When N > 1, it is con-
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Here, I will consider t
1

< ... < tN . For N = 2 explicitly
inverting
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gives an expression for ⇢ in terms of B:
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I can now find an expression for general N using induc-
tion. Writing CN in blocks:
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pression for the inverse:
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where µ = 1�v>(C�1

N�1

v). Rather than inverting CN�1

,
my expression for ⇢N in terms of ⇢N�1

will only need
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which gives:
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In terms of ⇢N�1

, one thus finds:

⇢N =
�
m
⇡

� 1

2

�
m
⇡

�N�1

2

e
�mx

>
N�1

C�1

N�1

x

N�1p
detC

N�1

e�m�(x

>C�1

x)

p
µ

= ⇢N�1

⇢t
N

,t
N�1

(xN , xN�1

)⌦
0

(xN�1

)�2

= ⇢N�1

⌦
0

(xN�1

)�1Bt
N

�t
N�1

(xN�1

, xN )⌦
0

(xN )
(12)

The expressions for N = 1 and N = 2 are both consistent
with the following expression for general N :
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where t
1

< ... < tN .
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