Gaussian Measures and the QM Oscillator

Sabrina Gonzalez Pasterski

(Dated: April 20, 2014)
In this paper, I show how probability densities associated with a Gaussian field can be expressed in terms of the Boltzmann heat kernel. The $N \leq 2$ calculations are based off of the work of Arthur Jaffe, while the proof of his postulate for general N is original.

In "Fields with a Gaussian Measure," I found:

$$
\begin{align*}
\rho_{t}(x) & \equiv \int \prod_{i=1}^{N} \delta\left(\Phi\left(t_{i}\right)-x_{i}\right) \mathrm{d} \mu_{\mathrm{c}} \\
& =\frac{1}{\sqrt{(2 \pi)^{n} \operatorname{det}}} e^{-\frac{1}{2} \mathrm{x}^{\top} \mathrm{C}^{-1} \mathrm{x}} \tag{1}
\end{align*}
$$

where $\mathrm{C}_{i j}=C\left(t_{i}-t_{j}\right)=\frac{1}{2 m} e^{-m\left|t_{i}-t_{j}\right|}$. Now, consider the operator:

$$
\begin{equation*}
H_{0}=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+m^{2} x^{2}-m\right) \tag{2}
\end{equation*}
$$

which can be thought of as the Hamiltonian for the simple harmonic oscillator with position coordinate scaled to have unit mass, and frequency $\omega=m$. The spectrum is $m \mathbb{Z}^{+}$and the ground state is given by:

$$
\begin{equation*}
\Omega_{0}(x)=\left(\frac{m}{\pi}\right)^{1 / 4} e^{-\frac{m x^{2}}{2}} \tag{3}
\end{equation*}
$$

For $t>0$, the Boltzmann integral kernel gives the evolution:

$$
\begin{equation*}
\left(e^{-t H_{0}} f\right)(x)=\int_{-\infty}^{\infty} \mathcal{B}_{t}\left(x, x^{\prime}\right) f\left(x^{\prime}\right) \mathrm{d} x^{\prime} \tag{4}
\end{equation*}
$$

For $N=1, \rho_{t}(x)=\Omega_{0}(x)^{2}$. When $N>1$, it is convenient to define $\mathbb{C}=2 m C$ so that $\mathbb{C}_{i j}=e^{-m\left|t_{i}-t_{j}\right|}$. Then:

$$
\begin{equation*}
\rho_{t}(x)=\left(\frac{m}{\pi}\right)^{N / 2} \frac{e^{-m x^{\top} \mathbb{c}^{-1} \mathrm{x}}}{\sqrt{\operatorname{det} \mathbb{C}}} \tag{5}
\end{equation*}
$$

Here, I will consider $t_{1}<\ldots<t_{N}$. For $N=2$ explicitly inverting

$$
\mathbb{C}_{2} \equiv\left(\begin{array}{ll}
1 & e^{-m\left(t_{2}-t_{1}\right)} \tag{6}\\
e^{-m\left(t_{2}-t_{1}\right)} & 1
\end{array}\right)
$$

gives an expression for ρ in terms of \mathcal{B} :

$$
\begin{equation*}
\rho_{t_{1}, t_{2}}\left(x_{1}, x_{2}\right)=\Omega_{0}\left(x_{1}\right) \mathcal{B}_{t_{2}-t_{1}}\left(x_{1}, x_{2}\right) \Omega_{0}\left(x_{2}\right) \tag{7}
\end{equation*}
$$

I can now find an expression for general N using induction. Writing \mathbb{C}_{N} in blocks:

$$
\mathbb{C}_{N} \equiv\left(\begin{array}{ll}
\mathbb{C}_{N-1} & v \tag{8}\\
v^{\top} & 1
\end{array}\right)
$$

where $v^{\top}=\left(e^{-m\left(t_{N}-t_{1}\right)} \ldots e^{-m\left(t_{N}-t_{N-1}\right)}\right)$, leads to an expression for the inverse:

$$
\mathbb{C}_{N}^{-1} \equiv\left(\begin{array}{cc}
\mathbb{C}_{N-1}^{-1}+\frac{\left(\mathbb{C}_{N-1}^{-1} v\right)\left(\mathbb{C}_{N-1}^{-1} v\right)^{\top}}{\mu} & -\frac{\left(\mathbb{C}_{N-1}^{-1} v\right)}{\mu} \tag{9}\\
-\frac{\left(\mathbb{C}_{N-1}^{-1} v\right)^{\top}}{\mu} & \frac{1}{\mu}
\end{array}\right)
$$

where $\mu=1-v^{\top}\left(\mathbb{C}_{N-1}^{-1} v\right)$. Rather than inverting \mathbb{C}_{N-1}, my expression for ρ_{N} in terms of ρ_{N-1} will only need the product $\left(\mathbb{C}_{N-1}^{-1} v\right)$. Because the inverse exists, it is equivalent to finding ξ such that $v=\mathbb{C}_{N-1} \xi$. Since the last column of \mathbb{C}_{N-1} is $\left(e^{-m\left(t_{N-1}-t_{1}\right)} \ldots 1\right)$, I find that:

$$
\begin{equation*}
\left(\mathbb{C}_{N-1}^{-1} v\right)_{j}=e^{-m\left(t_{N}-t_{N-1}\right)} \delta_{j, N-1} \tag{10}
\end{equation*}
$$

which gives:

$$
\begin{align*}
\mu= & 1-e^{-2 m\left(t_{N}-t_{N-1}\right)} \\
\mathrm{x}_{N}^{\top} \mathbb{C}_{N}^{-1} \mathrm{x}_{N}= & \mathrm{x}_{N-1}^{\top} \mathbb{C}_{N-1}^{-1} \mathrm{x}_{N-1}+\frac{1}{\mu}\left[x_{N}^{2}+e^{-2 m\left(t_{N}-t_{N-1}\right)} x_{N-1}^{2}\right. \\
& \left.-2 x_{N} x_{N-1} e^{-m\left(t_{N}-t_{N-1}\right)}\right] \tag{11}
\end{align*}
$$

In terms of ρ_{N-1}, one thus finds:

$$
\begin{align*}
\rho_{N} & =\left(\frac{m}{\pi}\right)^{\frac{1}{2}}\left(\frac{m}{\pi}\right)^{\frac{N-1}{2}} \frac{e^{-m \mathbf{x}_{N-1}^{\top} \mathbb{C}_{N-1}^{-1} \mathrm{x}_{N-1}}}{\sqrt{\operatorname{det} \mathbb{C}_{N-1}}} \frac{e^{-m \Delta\left(\mathrm{x}^{\top} \mathrm{c}^{-1} \mathrm{x}\right)}}{\sqrt{\mu}} \\
& =\rho_{N-1} \rho_{t_{N}, t_{N-1}}\left(x_{N}, x_{N-1}\right) \Omega_{0}\left(x_{N-1}\right)^{-2} \\
& =\rho_{N-1} \Omega_{0}\left(x_{N-1}\right)^{-1} \mathcal{B}_{t_{N}-t_{N-1}}\left(x_{N-1}, x_{N}\right) \Omega_{0}\left(x_{N}\right) \tag{12}
\end{align*}
$$

The expressions for $N=1$ and $N=2$ are both consistent with the following expression for general N :

$$
\begin{array}{r}
\rho_{N}=\Omega_{0}\left(x_{1}\right) \mathcal{B}_{t_{2}-t_{1}}\left(x_{1}, x_{2}\right) \mathcal{B}_{t_{3}-t_{2}}\left(x_{2}, x_{3}\right) \ldots \tag{13}\\
\ldots \mathcal{B}_{t_{N}-t_{N-1}}\left(x_{N-1}, x_{N}\right) \Omega_{0}\left(x_{N}\right)
\end{array}
$$

where $t_{1}<\ldots<t_{N}$.

