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I examine the connection between symmetries and soft factors for the case of graviton scattering.

In QFT, soft theorems describe the e↵ect of adding an
additional low momentum particle to an existing process
and observing the change in the S matrix as this new
particle’s momentum is taken to zero. In the particular
case where this particle is added to an external line, the
change in the S matrix amounts to adding an interaction
vertex factor and an extra factor of the propagator for
the line to which the soft particle is attached.

This can be more clearly seen by considering the mo-
mentum space correlation function for the interaction.
As the external particles for a given process go on shell:
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so that there are poles corresponding to each incoming
and outgoing particle. When a massless soft particle of
momentum q is also emitted, the momentum space cor-
relation function becomes:
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The goal is to relate S(p1, ...pn) to S̃(q, p1, ...pn).
Consider the case where a massless  particle of mo-

mentum q is attached to an outgoing � particle with mo-
mentum p1 and mass m1, a Feynman diagram approach
shows that the di↵erence between the two matrix ele-
ments S and S̃ is and overall factor of the propagator of
a � particle with momentum p1+ q and the vertex factor
associated with the  �� interaction, which I will denote
V( J�):

S̃(q, p1, ...pn) ⇡ �i
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Two important considerations allowed me to write the
new matrix element in this form: 1. Since q is small, I
assumed that changing p1 to p1+q did not a↵ect the rest
of the diagram. (Sometimes, derivations will change the
momentum of the new external leg instead. Either case
requires the approximation that the � particle is nearly
on shell both before and after the  emission.) 2. the
fact that q is massless and on-shell resulted in the dot-
product form of the denominator, since the p

2
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the m

2
1.

What remains is to calculate the vertex factor due
to the  particle interacting with the J� current. As
q ! 0, only terms of up to O(q) in V( J�) will survive.

This amounts to considering interaction terms in the La-
grangian that have only 0 or 1 derivatives of  .
Gauge invariance restricts the form of the interaction

terms allowed. Consider electromagnetism as an exam-
ple. If the photon field Aµ couples to matter via AµJ

µ,
then sending Aµ ! rµ� gives:

AµJ
µ ! (rµ�)J

µ
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where the second line is after integrating by parts within
the Lagrangian. Since this must be zero for any function
�, one concludes rµJ

µ = 0.
For the case where  represents a soft graviton, similar

gauge invariance allows us to predict the form of the in-
teraction vertices in the Lagrangian. Here the dynamical
 field is hµ⌫ where gµ⌫ = ⌘µ⌫ +hµ⌫ . Interaction terms
in the Lagrangian involving hµ⌫ must be completely con-
tracted to preserve Lorentz invariance.
First, consider a term with no derivatives of hµ⌫ :

L0
int = hµ⌫S

µ⌫ . Gauge invariance requires that sending
hµ⌫ ! rµ⇠⌫ +r⌫⇠µ gives zero:
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from this one concludes rµS
(µ⌫) = 0. Since only the

symmetric part of Sµ⌫ remains after contracting with
hµ⌫ , we find that hµ⌫ couples to a conserved rank 2 ten-
sor. A natural candidate is L0

int / hµ⌫T
µ⌫
M . Where T

µ⌫
M

is the matter stress-energy tensor.
Now consider terms with a single derivative of hµ⌫ .

For a transversely polarized graviton field a @⌫h
µ⌫ term

within L1
int would result in a q⌫✏

µ⌫ = 0 within the vertex
factor associated to this interaction. We can thus hypoth-
esize an interaction term of the form: L1
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µ⌫�.

Gauge invariance implies:
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where I have replaced covariant derivatives with par-
tial derivatives in my weak gravity approximation to
avoid ambiguities in the product rule for the covari-
ant derivative acting on a non-tensor object. The con-
served angular momentum tensor has the desired struc-

ture: @µM
µ⌫� = 0 where M
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give:
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at linear order in hµ⌫ if I choose a traceless gauge, since
the second term is zero by the antisymmetry of S, while
��
�� = 1

2g
⇢⌧
@�g⇢⌧ = @�h

⇢
⇢ +O(h2) which is zero if h⇢

⇢ =
0. From Equation 6, it is thus natural to hypothesize in
interaction term: L1

int / @�hµ⌫M
µ⌫�.

I will now show that these Lagrangian interaction
terms give expected vertex factors for a massless scalar
field. The stress energy tensor for a massless scalar field
is:
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so that within the contractions for L0
int and L1

int, I can
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Partial derivatives will pull down factors of the corre-
sponding field’s momentum, while hµ⌫ will go to the the
polarization vector ✏µ⌫ in the vertex factor:
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So that the soft factors corresponding to the addition of
a soft graviton to an external line are:
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