Gaussian Measures and Commutators

Sabrina Gonzalez Pasterski
(Dated: March 10, 2014)

I show how defining a field with a gaussian measure gives rise to a classical interpretation of the
equal time commutation relations for a field and its derivative.

One aspect that distinguishes time from space is that
while displacements along any spatial axis can be in ei-
ther the positive or negative direction, our motion in time
is monotonic. It is thus possible to consider a space-time
that is infinite in spatial extent, but only semi-infinite in
temporal extent (i.e. considering functions which are 0
for t < 0). I will work in Wick-rotated time coordinates
for which 7 = it and treat 7 as a real coordinate.

I. BACKGROUND FROM A.J.’S 216

Consider the d’Alembertian: 0 = 92 — A (this paper
will take units in which & = ¢ = 1). In terms of 7, this
becomes: [0 = —92 — A. One can study the action of
O+ m? on f(7,Z) by considering its Green’s function:
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where k = (E, k) is a Euclidian momentum. Defining
u(k) = \/152—1——77127 the F integral becomes:
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where for this integral to converge, the time ¢ must be
treated as imaginary, so that 7 is real.

The result is that: C(x — ') = (ﬁe*“’ﬂ“) (Z — )

for p = vV=A+m?2 C(x — ') can be used to define a
gaussian measure:
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Requiring that the function f be real and non-zero only
for 7 > 0 has the advantage of making (f,0Cf) > 0,
where the operator 6 inverts 7’.

The above calculations/definitions are based on A.J.’s
notes, with the Wick rotation made explicit here. In the
following section, I will used the above gaussian mea-
sure to show how the canonical commutation relations
of quantum fields can be viewed as arising from possible
temporal discontinuities in .

II. COMMUTATION RELATIONS FROM THE
GAUSSIAN MEASURE

Here, I will integrate out the spatial dependence, and
take u — M, where M is a constant, mass-like term. The
equal time commutation relations of a quantum field are:
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For a classical field ®(7) defined by the gaussian mea-
sure du(®), the time correlation is given by C(r — 7') =
ﬁe‘M“_ﬂ, which satisfies (-9 + M?)C(r — 7') =
0(7 — 7') by its definition as a Green’s function.

In the context of a random, not necessarily continuous,
field ®(7), the idea of a local time derivative should be
replaced with the limit definition:
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where this limit takes physical meaning when its expec-
tation value with respect to du(®) is taken.

If one interprets (Q|[¢, 0:¢]|Q?) as the difference of 1:
measuring the time derivative and then the field, and
2: measuring the field and then its time derivative, in
the limit at which the field and derivative measurements
approach being at the same time, then the necessity of
specifying such a time order becomes natural in the con-
text of a derivative that is defined in terms of a limit of
two field measurements spaced by Ar. For ®(7):
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Since 0(7 —7') = —id(t — '), C(x — a’) satisfies the same
differential equation as the Feynman propagator:

(O +m?) / O(z)®(2)dp® = —id*(x — 2).  (8)

A classical expectation value which behaves like the Feyn-
man propagator gives a classical interpretation of [¢, 0;¢].
The ordering of ®(x) and 0,®(x) matters because of the
non-locality of measuring a time averaged derivative of a
function that is Holder continuous with exponent 1/2.
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