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I show how defining a field with a gaussian measure gives rise to a classical interpretation of the

equal time commutation relations for a field and its derivative.

One aspect that distinguishes time from space is that
while displacements along any spatial axis can be in ei-
ther the positive or negative direction, our motion in time
is monotonic. It is thus possible to consider a space-time
that is infinite in spatial extent, but only semi-infinite in
temporal extent (i.e. considering functions which are 0
for t < 0). I will work in Wick-rotated time coordinates
for which ⌧ = it and treat ⌧ as a real coordinate.
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where for this integral to converge, the time t must be
treated as imaginary, so that ⌧ is real.
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gaussian measure:
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Requiring that the function f be real and non-zero only
for ⌧ > 0 has the advantage of making hf̄ , ✓Cfi � 0,
where the operator ✓ inverts ⌧ 0.

The above calculations/definitions are based on A.J.’s
notes, with the Wick rotation made explicit here. In the
following section, I will used the above gaussian mea-
sure to show how the canonical commutation relations
of quantum fields can be viewed as arising from possible
temporal discontinuities in �.

II. COMMUTATION RELATIONS FROM THE
GAUSSIAN MEASURE

Here, I will integrate out the spatial dependence, and
take µ ! M , whereM is a constant, mass-like term. The
equal time commutation relations of a quantum field are:
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For a classical field �(⌧) defined by the gaussian mea-
sure dµ(�), the time correlation is given by C(⌧ � ⌧
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In the context of a random, not necessarily continuous,

field �(⌧), the idea of a local time derivative should be
replaced with the limit definition:
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where this limit takes physical meaning when its expec-
tation value with respect to dµ(�) is taken.
If one interprets h⌦|[�, @

t

�]|⌦i as the di↵erence of 1:
measuring the time derivative and then the field, and
2: measuring the field and then its time derivative, in
the limit at which the field and derivative measurements
approach being at the same time, then the necessity of
specifying such a time order becomes natural in the con-
text of a derivative that is defined in terms of a limit of
two field measurements spaced by �⌧ . For �(⌧):
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Since �(⌧ � ⌧
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0), C(x�x

0) satisfies the same
di↵erential equation as the Feynman propagator:
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A classical expectation value which behaves like the Feyn-
man propagator gives a classical interpretation of [�, @

t

�].
The ordering of �(x) and @

t

�(x) matters because of the
non-locality of measuring a time averaged derivative of a
function that is Hölder continuous with exponent 1/2.
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