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I define a covariant derivative to simplify how higher order derivatives act on a classical generating
function.

When studying the connection between classical and
quantum mechanics, it would be nice to have a differ-
ential operator which, when acting repeatedly on some

function ei
S(q,P,t)

~ pulls down powers of the derivatives of
the function within the exponent.

Consider the results of “Wavefunctions and the
Hamilton-Jacobi Equation.” There, I performed a canon-
ical change of variables from (qi, pi) to constants (Qi, Pi):

piq̇i −H(q, p, t) = PiQ̇i −K(Q,P, t) +
dF

dt
(1)

where F = S(q, P, t)− PiQi, and found:

H = −∂S

∂t
pi =

∂S

∂qi
Qi =

∂S

∂Pi
. (2)

when K = 0. At first order, the function ei
S
~ had the

property that ordinary multiplication by the value of H
or pj was equivalent to acting with a differential operator:

H · ei
S
~ = − ∂S

∂t
ei

S
~ = i~∂te

iS~

pj · ei
S
~ = ∂S

∂qj
ei

S
~ = ~

i
∂qj e

iS~ .

(3)

Moreover, this connection between multiplication and a
differential operator held at first order for arbitrary su-
perpositions:

Φ(q, t) =

∫
P(Pi)e

i
S(q,P,t)

~ dPi. (4)

In this paper, I will consider the one dimensional case
q = x and define a covariant derivative such that acting

on ei
S(x,P,t)

~ a total of n times with the operator ~
i∇x

is exactly equivalent to multiplying ei
S(x,P,t)

~ by pn =
(∂S
∂x )n.

The key is to treat ei
S(x,P,t)

~ as a scalar, with a non-
trivial one-dimensional spatial metric gxx = (∂S

∂q )2. Then

there is a non-zero connection Γx
xx = 1

2g
xx∂xgxx = S′′

S′ ,
where primes denote partial derivatives with respect to
x.

If I treat p̂nei
S(x,P,t)

~ ≡
(~
i

)n∇ne
i
S(x,P,t)

~ as a covariant
rank-n tensor, I find that:

∇ne
iS~ ≡ ∇x∇x...∇xe

iS~

= ∂x(∇n−1e
iS~ )− (n− 1)Γx

xx∇n−1e
iS~

(5)

It is quick to check for n = 1 that ∇1e
iS
~ ≡ ∇xe

iS
~ =

∂xe
iS
~ . If it is true that ∇n−1e

iS
~ = ( i

~S
′)(n−1)ei

S
~ , then:

∇ne
iS~ = ∂x(( i

~S
′)(n−1)ei

S
~ )− (n− 1)Γx

xx · ( i
~S
′)(n−1)ei

S
~

= (n− 1)( i
~S
′)(n−2) i

~S
′′ei

S
~ + ( i

~S
′)nei

S
~

− (n− 1)Γx
xx · ( i

~S
′)(n−1)ei

S
~

= ( i
~S
′)nei

S
~

(6)

since Γx
xx = S′′

S′ , so
(~
i S
′)n eiS(x,P,t)

~ = p̂nei
S(x,P,t)

~ =(~
i

)n∇ne
i
S(x,P,t)

~ holds by induction.

If I define a partition function expectation value:

〈O(x, p)〉 ≡
∫
P(P )dPdqO(x, p)ei

S(x,P,t)
~∫

P(P )dPdqei
S(x,P,t)

~
(7)

then this is equivalent to:

〈O(x, p)〉 =

∫
P(P )dPdx : Ô(x, p̂) : ei

S(x,P,t)
~∫

P(P )dPdxei
S(x,P,t)

~
(8)

where the normal ordered operator is defined such that
all of the momentum operators appear on the right. The
direct correspondence between xnpm = xn(S′)m in O
and xnp̂m = xn(~

i )m∇m in : Ô(q, p̂) : thus follows from
the composition property of the covariant derivative.

Summarizing Equation 8 as 〈O(q, p)〉 = : Ô(q, p̂) :〉, one
finds that for an operator which does not explicitly de-
pend on time:

〈dO
dt
〉 = 〈{O, H}〉

= 〈: ̂{O, H} :〉
= −i

~ 〈:[: Ô :, : Ĥ :] :〉
(9)

The last equality comes from considering a generic term
in the series expansion of O(x, p)

〈{xnpm, xrps}〉 = (ns−mr)〈xn+r−1pm+s−1〉
= (ns−mr)〈xn+r−1p̂m+s−1〉 (10)

versus

−i
~ 〈:[x

np̂m, xrp̂s] :〉 = 〈:xn[p̂m, xr]p̂s + xr[xn, p̂s]p̂m :〉
= (ns−mr)〈xn+r−1p̂m+s−1〉

(11)

where some care must be taken when specifying what it
means to normal order the commutator (e.x. I would
want to have : [x, p̂] := i~ and not : [x, p̂] :=: xp̂ : − :
p̂x := 0).

Equation 9 is similar to Ehrenfest’s Theorem. There
is a natural association between the Poisson Bracket of
classical mechanics and the normal ordered commutator
of normal ordered operators.
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