Covariant Derivatives and the Hamilton-Jacobi Equation

Sabrina Gonzalez Pasterski

(Dated: March 2, 2014)
I define a covariant derivative to simplify how higher order derivatives act on a classical generating function.

When studying the connection between classical and quantum mechanics, it would be nice to have a differential operator which, when acting repeatedly on some function $e^{i \frac{S(q, P, t)}{\hbar}}$ pulls down powers of the derivatives of the function within the exponent.

Consider the results of "Wavefunctions and the Hamilton-Jacobi Equation." There, I performed a canonical change of variables from $\left(q_{i}, p_{i}\right)$ to constants $\left(Q_{i}, P_{i}\right)$:

$$
\begin{equation*}
p_{i} \dot{q}_{i}-H(q, p, t)=P_{i} \dot{Q}_{i}-K(Q, P, t)+\frac{d F}{d t} \tag{1}
\end{equation*}
$$

where $F=S(q, P, t)-P_{i} Q_{i}$, and found:

$$
\begin{equation*}
H=-\frac{\partial S}{\partial t} \quad p_{i}=\frac{\partial S}{\partial q_{i}} \quad Q_{i}=\frac{\partial S}{\partial P_{i}} \tag{2}
\end{equation*}
$$

when $K=0$. At first order, the function $e^{i \frac{S}{\hbar}}$ had the property that ordinary multiplication by the value of H or p_{j} was equivalent to acting with a differential operator:

$$
\begin{align*}
& H \cdot e^{i \frac{S}{\hbar}}=-\frac{\partial S}{\partial t} e^{i \frac{S}{\hbar}}=i \hbar \partial_{t} e^{i \frac{S}{\hbar}} \tag{3}\\
& p_{j} \cdot e^{i \frac{S}{\hbar}}=\frac{\partial S}{\partial q_{j}} e^{i \frac{S}{\hbar}}=\frac{\hbar}{i} \partial_{q_{j}} e^{i \frac{S}{\hbar}} .
\end{align*}
$$

Moreover, this connection between multiplication and a differential operator held at first order for arbitrary superpositions:

$$
\begin{equation*}
\Phi(q, t)=\int \mathbb{P}\left(P_{i}\right) e^{i \frac{S(q, P, t)}{\hbar}} \mathrm{d} P_{i} \tag{4}
\end{equation*}
$$

In this paper, I will consider the one dimensional case $q=x$ and define a covariant derivative such that acting on $e^{i \frac{S(x, P, t)}{\hbar}}$ a total of n times with the operator $\frac{\hbar}{i} \nabla_{x}$ is exactly equivalent to multiplying $e^{i \frac{S(x, P, t)}{\hbar}}$ by $p^{n}=$ $\left(\frac{\partial S}{\partial x}\right)^{n}$.

The key is to treat $e^{i \frac{S(x, P, t)}{\hbar}}$ as a scalar, with a nontrivial one-dimensional spatial metric $g_{x x}=\left(\frac{\partial S}{\partial q}\right)^{2}$. Then there is a non-zero connection $\Gamma_{x x}^{x}=\frac{1}{2} g^{x x} \partial_{x} g_{x x}=\frac{S^{\prime \prime}}{S^{\prime}}$, where primes denote partial derivatives with respect to x.

If I treat $\hat{p}^{n} e^{i \frac{S(x, P, t)}{\hbar}} \equiv\left(\frac{\hbar}{i}\right)^{n} \nabla_{n} e^{i \frac{S(x, P, t)}{\hbar}}$ as a covariant rank- n tensor, I find that:

$$
\begin{align*}
\nabla_{n} e^{i \frac{S}{\hbar}} & \equiv \nabla_{x} \nabla_{x} \ldots \nabla_{x} e^{i \frac{S}{\hbar}} \\
& =\partial_{x}\left(\nabla_{n-1} e^{i \frac{S}{\hbar}}\right)-(n-1) \Gamma_{x x}^{x} \nabla_{n-1} e^{i \frac{S}{\hbar}} \tag{5}
\end{align*}
$$

It is quick to check for $n=1$ that $\nabla_{1} e^{i \frac{S}{\hbar}} \equiv \nabla_{x} e^{i \frac{S}{\hbar}}=$ $\partial_{x} e^{i \frac{S}{\hbar}}$. If it is true that $\nabla_{n-1} e^{i \frac{S}{\hbar}}=\left(\frac{i}{\hbar} S^{\prime}\right)^{(n-1)} e^{i \frac{S}{\hbar}}$, then:

$$
\begin{align*}
\nabla_{n} e^{i \frac{S}{\hbar}}= & \partial_{x}\left(\left(\frac{i}{\hbar} S^{\prime}\right)^{(n-1)} e^{i \frac{S}{\hbar}}\right)-(n-1) \Gamma_{x x}^{x} \cdot\left(\frac{i}{\hbar} S^{\prime}\right)^{(n-1)} e^{i \frac{S}{\hbar}} \\
= & (n-1)\left(\frac{i}{\hbar} S^{\prime}\right)^{(n-2)} \frac{i}{\hbar} S^{\prime \prime} e^{i \frac{S}{\hbar}}+\left(\frac{i}{\hbar} S^{\prime}\right)^{n} e^{i \frac{S}{\hbar}} \\
& -(n-1) \Gamma_{x x}^{x} \cdot\left(\frac{i}{\hbar} S^{\prime}\right)^{(n-1)} e^{i \frac{S}{\hbar}} \\
= & \left(\frac{i}{\hbar} S^{\prime}\right)^{n} e^{i \frac{S}{\hbar}} \tag{6}
\end{align*}
$$

since $\Gamma_{x x}^{x}=\frac{S^{\prime \prime}}{S^{\prime}}$, so $\left(\frac{\hbar}{i} S^{\prime}\right)^{n} e^{i \frac{S(x, P, t)}{\hbar}}=\hat{p}^{n} e^{i \frac{S(x, P, t)}{\hbar}}=$ $\left(\frac{\hbar}{i}\right)^{n} \nabla_{n} e^{i \frac{S(x, P, t)}{\hbar}}$ holds by induction.

If I define a partition function expectation value:

$$
\begin{equation*}
\langle\mathcal{O}(x, p)\rangle \equiv \frac{\int \mathbb{P}(P) \mathrm{d} P \mathrm{~d} q \mathcal{O}(x, p) e^{i \frac{S(x, P, t)}{\hbar}}}{\int \mathbb{P}(P) \mathrm{d} P \mathrm{~d} q e^{\frac{S(x, P, t)}{\hbar}}} \tag{7}
\end{equation*}
$$

then this is equivalent to:

$$
\begin{equation*}
\langle\mathcal{O}(x, p)\rangle=\frac{\int \mathbb{P}(P) \mathrm{d} P \mathrm{~d} x: \hat{\mathcal{O}}(x, \hat{p}): e^{i \frac{S(x, P, t)}{\hbar}}}{\int \mathbb{P}(P) \mathrm{d} P \mathrm{~d} x e^{i \frac{S(x, P, t)}{\hbar}}} \tag{8}
\end{equation*}
$$

where the normal ordered operator is defined such that all of the momentum operators appear on the right. The direct correspondence between $x^{n} p^{m}=x^{n}\left(S^{\prime}\right)^{m}$ in \mathcal{O} and $x^{n} \hat{p}^{m}=x^{n}\left(\frac{\hbar}{i}\right)^{m} \nabla_{m}$ in : $\hat{\mathcal{O}}(q, \hat{p}):$ thus follows from the composition property of the covariant derivative.

Summarizing Equation 8 as $\langle\mathcal{O}(q, p)\rangle=: \hat{\mathcal{O}}(q, \hat{p}):\rangle$, one finds that for an operator which does not explicitly depend on time:

$$
\begin{align*}
\left\langle\frac{\mathrm{dO}}{\mathrm{~d} t}\right\rangle & =\langle\{\mathcal{O}, H\}\rangle \\
& =\langle:\{\hat{\mathcal{O}, H}\}:\rangle \tag{9}\\
& =\frac{-i}{\hbar}\langle:[: \hat{\mathcal{O}}:,: \hat{H}:]:\rangle
\end{align*}
$$

The last equality comes from considering a generic term in the series expansion of $\mathcal{O}(x, p)$

$$
\begin{align*}
\left\langle\left\{x^{n} p^{m}, x^{r} p^{s}\right\}\right\rangle & =(n s-m r)\left\langle x^{n+r-1} p^{m+s-1}\right\rangle \tag{10}\\
& =(n s-m r)\left\langle x^{n+r-1} \hat{p}^{m+s-1}\right\rangle
\end{align*}
$$

versus

$$
\begin{align*}
\frac{-i}{\hbar}\left\langle:\left[x^{n} \hat{p}^{m}, x^{r} \hat{p}^{s}\right]:\right\rangle & =\left\langle: x^{n}\left[\hat{p}^{m}, x^{r}\right] \hat{p}^{s}+x^{r}\left[x^{n}, \hat{p}^{s}\right] \hat{p}^{m}:\right\rangle \\
& =(n s-m r)\left\langle x^{n+r-1} \hat{p}^{m+s-1}\right\rangle \tag{11}
\end{align*}
$$

where some care must be taken when specifying what it means to normal order the commutator (e.x. I would want to have $:[x, \hat{p}]:=i \hbar$ and not $:[x, \hat{p}]:=: x \hat{p}:-:$ $\hat{p} x:=0$).

Equation 9 is similar to Ehrenfest's Theorem. There is a natural association between the Poisson Bracket of classical mechanics and the normal ordered commutator of normal ordered operators.

