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I define a covariant derivative to simplify how higher order derivatives act on a classical generating

function.

When studying the connection between classical and
quantum mechanics, it would be nice to have a differ-
ential operator which, when acting repeatedly on some

function e =" pulls down powers of the derivatives of
the function within the exponent.

Consider the results of “Wavefunctions and the
Hamilton-Jacobi Equation.” There, I performed a canon-
ical change of variables from (g;, p;) to constants (Q;, P;):
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where F' = S(q, P,t) — P;Q;, and found:
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when K = 0. At first order, the function ¢% had the
property that ordinary multiplication by the value of H
or p; was equivalent to acting with a differential operator:

;S S ;S
H-e'n = —%—fe' ro=thoe'n
3
uei%_c’)sei%_ﬁa e 3
Dj = Bq; — 7Y%y :

Moreover, this connection between multiplication and a
differential operator held at first order for arbitrary su-
perpositions:
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In this paper, I will consider the one dimensional case
q = x and define a covariant derivative such that acting

on eiS(I%P’t) a total of n times with the operator %Vm
. . . ;S(e.P.t)

is exactly equivalent to multiplying S by p" =
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The key is to treat e’ ®»  as a scalar, with a non-

trivial one-dimensional spatial metric g, = (%2)2. Then
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where primes denote partial derivatives with respect to
x.
If T treat ﬁ"eis(m’hp't) = (ﬁ)n Vet
rank-n tensor, I find that:
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(@) Vne'~ & holds by induction.
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If T define a partition function expectation value:
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then this is equivalent to:
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where the normal ordered operator is defined such that
all of the momentum operators appear on the right. The
direct correspondence between z"p™ = 2"(S")™ in O
and z"p™ = 2"(2)mV,, in :O(q,p) : thus follows from
the composition property of the covariant derivative.

Summarizing Equation 8 as (O(q, p)) = : O(q,p) :), one
finds that for an operator which does not explicitly de-
pend on time:
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The last equality comes from considering a generic term
in the series expansion of O(zx, p)
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where some care must be taken when specifying what it
means to normal order the commutator (e.x. I would
want to have : [z,p] := i¢h and not : [z,p] :=: p : — :
px = 0).

Equation 9 is similar to Ehrenfest’s Theorem. There
is a natural association between the Poisson Bracket of
classical mechanics and the normal ordered commutator
of normal ordered operators.
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