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1 Introduction

BMS+ transformations [1, 2] comprise a subset of diffeomorphisms which act nontrivially

on future null infinity of asymptotically Minkowskian space times, or I+. BMS− transfor-

mations act isomorphically on past null infinity, or I−. A particular ‘diagonal’ subgroup of

the product group BMS+×BMS− has recently been shown [3] to be a symmetry of gravita-

tional scattering. Ward identities of this diagonal symmetry relate S-matrix elements with

and without soft gravitons. These S-matrix relations are not new [4]: they comprise Wein-

berg’s soft graviton theorem [5]. More generally, the connection to soft theorems provides

a new perspective on asymptotic symmetries in Minkowski space [6].

Over the decades a number of extensions/modifications to the BMS group have been

proposed: e.g. the Newman-Unti group [7], the Spi group [8] and the extended BMS

group [9–12]. A criterion is needed to decide whether or not such extensions are ‘physical.’

Here we adopt the pragmatic approach that a Minkowskian asymptotic symmetry is phys-

ical if and only if it provides nontrivial relations among S-matrix elements. We will view

these S-matrix relations as a definition of the symmetry.

In this paper we will show that, at tree-level, quantum gravity in asymptotically

Minkowskian spaces in this sense has a physical Virasoro symmetry. The symmetry is

implied by a recently proven soft theorem [13] and acts (diagonally) on the conformal S2

at I.
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Our story begins with a conjecture of Barnich, Troessaert and Banks (BTB) [9–12].

BMS+ has an SL(2, C) Lorentz subgroup generated by the six global conformal Killing

vectors (CKVs) on the S2 at I+. Locally, BTB showed that all of the infinitely many CKVs

preserve the same asymptotic structure at I+ and are hence also candidate asymptotic

symmetry generators. This larger set of vector fields was a priori excluded in the original

work of BMS, who demanded that they be nonsingular everywhere on S2. This restriction

cuts the Virasoro group down to a mere SL(2, C). BTB conjectured that the true asymptotic

symmetry group of I+ is the ‘extended BMS+ group’ generated by all CKVs. However it

has not been clear if or in what sense the singular CKVs truly generate physical asymptotic

symmetries.

Herein we consider, in the spirit of [3], a certain diagonal subgroup of (extended

BMS+)×(extended BMS−), denoted X . Ward identities are derived for a Virasoro sub-

group of X . They are found to involve a soft graviton insertion with the Weinberg pole

projected out, leaving the finite subleading term in the soft expansion. These Ward iden-

tities are in turn shown to be implied by a conjectured [14] soft relation schematically of

the form

lim
ω→0
Mn+1 = S(1)Mn. (1.1)

Here Mn+1 is an n + 1-particle amplitude with a certain (pole-projected) energy ω soft

graviton insertion, and S(1) involves the soft graviton momentum as well as the energies

and angular momenta of the incoming and outgoing particles. Details are given below. The

proof [13] of (1.1) for tree-level gravity amplitudes then implies a semiclassical Virasoro

symmetry for the case of pure gravity. This demonstrates that the singularities in the

generic CKVs do not, at least in this context, prevent them from generating physical

symmetries.1

One might also hope to run the argument backwards and see to what extent the

Virasoro symmetry of the S-matrix implies the soft relation (1.1). In the case of super-

translations, the argument can be run in both directions [4]. However here we encounter

several obstacles, including the need for a prescription for handling the CKV singularities

and some zero mode issues. We leave this to future investigations.2 Hence at this point

the existence of a Virasoro symmetry is potentially a weaker condition than the validity of

the soft relation (1.1).

The analysis of [3, 4] related two structures which have been well-established and

thoroughly studied over the last half-century: BMS symmetry and Weinberg’s soft graviton

theorem. Here the situation is rather different. We are relating two unestablished and

understudied structures: asymptotic Virasoro symmetries and subleading soft graviton

theorems. We hope the relation will illuminate both. In any case it is a rather different

enterprise!

1It may alternatively be possible to reach this conclusion without appealing to direct computations such

as in [13] by carefully regulating the singularities and analyzing their effects. We do not attempt such an

analysis herein.
2The Virasoro charges constructed in [9–11] may be useful for this purpose.
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An important issue which we will not address is the quantum fate of the semiclassical

Virasoro symmetry. Here the situation is currently up in the air. In [15, 16] it was shown

that, in a standard regulator scheme, (1.1) receives IR divergent quantum corrections (at

one loop only), which also make the S-matrix ill-defined in this scheme. However in [17], the

factor S(1) in (1.1) relating the 5 and 4 point amplitude was found to remain uncorrected

at one loop in a scheme with the soft limit taken prior to removing the IR cutoff.3 In the

recent work [20, 21] (see also [22]) it was shown that a properly defined S-matrix utilizing

the gravity version of the Kulish-Faddeev construction [23] is free of all IR divergences.

This may be the proper context for the discussion, as it is hard to have a symmetry of

an S-matrix without an S-matrix! Should it ultimately be found that (1.1) does receive

scheme-independent corrections, one must then determine whether it implies a quantum

anomaly in the asymptotic Virasoro symmetry (which is potentially weaker than (1.1)), or

a quantum deformation in its action on the amplitudes. Clearly highly relevant, but not yet

fully incorporated into this discussion, is the low-energy theorem of Gross and Jackiw [24]

who use dispersion theory to show that there is no correction to the first three terms4

of the Born approximation to soft graviton-scalar scattering. This generalized the classic

low-energy theorem for QED by Low [25]. Progress on the gravity version was recently

made by White [22]. Clearly, there is much to understand!

The existence of a Virasoro symmetry potentially has far-reaching implications for

Minkowski quantum gravity in general. However, at this point there are many basic un-

resolved points and it is too soon to tell what or if they might be. For example we do

not know if the symmetry has quantum anomalies, what kind of representations appear,5

the role of IR divergences or the connection to stringy Virasoro symmetries [6, 26]. Very

recent developments indicate that these ideas, including the realization of the subleading

soft theorem as a Virasoro symmetry, have a natural home in the twistor string [27, 28].

Since the symmetry acts at the boundary, it is likely relevant to any holographic duality

as long ago envisioned in [29–31].

This paper is organized as follows. Section 2 establishes notation and reviews a few

salient formulae for asymptotically flat geometries. Section 3 describes the conjectured ex-

tended BMS± symmetry following [9–11]. In section 4 we define the diagonal subgroup X of

(extended BMS+)×(extended BMS−) transformations, review Christodoulou-Klainerman

(CK) spaces and define extended CK spaces by acting with X . A prescription is given to

define classical gravitational scattering from I− to I+ and shown to be symmetric under

X . In section 5 the discussion of the quantum theory begins with the the action of extended

BMS± generators on in and out states. A Ward identity is then derived which is equivalent

to infinitesimal X -invariance of S. It relates amplitudes with and without a particular soft

graviton insertion. Finally in section 6 we give the detailed form of the soft relation (1.1)

and show that it implies the X Ward identity.

3[17] claims a result only for this one special case by direct computation. However, it has been sug-

gested [18] that, using [19], a proof can be constructed in the scheme of [15, 16] that all loop corrections to

S(1) in (1.1) are linked to discontinuities arising from infrared singularities and hence in the scheme of [17]

(with the soft limit taken first) all loop corrections would disappear along with the discontinuities.
4S(0), S(1) and S(2) in the notation of [17].
5They may not be the familiar ones from the study of unitary 2D CFT on the sphere.
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2 Asymptotically flat geometry

2.1 Metrics

A general asymptotically Minkowskian metric can be expanded in 1
r around I+. In retarded

Bondi coordinates it takes the form6

ds2 =− du2 − 2dudr + 2r2γzz̄dzdz̄

+
2mB

r
du2 + rCzzdz

2 + rCz̄z̄dz̄
2 + 2guzdudz + 2guz̄dudz̄ + . . . , (2.1)

where the first line is the flat Minkowski metric, γzz̄ (Dz) is the round metric (covariant

derivative) on the unit S2 and

guz =
1

2
DzCzz +

1

6r
CzzDzC

zz +
2

3r
Nz +O(r−2). (2.2)

The Bondi mass aspect mB, the angular momentum aspect Nz and Czz depend only on

(u, z, z̄) and not r. The outgoing news tensor is defined by

Nzz ≡ ∂uCzz. (2.3)

I+ is the null surface (r = ∞, u, z, z̄). We use the symbol I+
+ (I+

− ) to denote the future

(past) boundary of I+ at (r = ∞, u = ∞, z, z̄) ((r = ∞, u = −∞, z, z̄)). This is depicted

in figure 1.

There is an analogous construction on I− with the metric given by

ds2 =− dv2 + 2dvdr + 2r2γzz̄dzdz̄

+
2m−B
r

dv2 + rDzzdz
2 + rDz̄z̄dz̄

2 + 2gvzdvdz + 2gvz̄dvdz̄ + . . . , (2.4)

with

gvz = −1

2
DzDzz −

1

6r
DzzDzD

zz − 2

3r
N−z +O(r−2). (2.5)

The I− coordinate z in (2.4) is antipodally related to the I+ coordinate z in (2.1) in the

sense that, for flat Minkowski space, a null geodesic begins and ends at the same value of

z. Put another way, in the conformal compactifcation of asymptotically flat spaces, all of I
is generated by null geodesics which run through spatial infinity i0. These generators have

the same constant z value on both I+ and I−. The incoming news tensor is defined by

Mzz ≡ ∂vDzz. (2.6)

When expanding about flat Minkowski space we sometimes employ flat coordinates in

which the flat metric takes the form

ds2
F = ηµνdx

µdxν . (2.7)

6We largely adopt the notation of [9–11] to which we refer the reader for further details.
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Figure 1. Penrose diagram for Minkowski space. Near I+ surfaces of constant retarded time u

(red) are cone-like and intersect I+ in a conformal S2 parametrized by (z, z̄). Cone-like surfaces of

constant advanced time v (green) intersect I− in a conformal S2 also parametrized by (z, z̄). The

future (past) S2 boundary of I+ is labelled I++ (I+−), while the future (past) boundary of I− is

labelled I−+ (I−− ).

These are related to Bondi coordinates in flat space by

x0 = u+ r = v − r,
x1 + ix2 =

2rz

1 + zz̄
,

x3 =
r(1− zz̄)

1 + zz̄
. (2.8)

2.2 Constraints

The data in (2.1) are related by the constraint equations Gµν = T Mµν , where T Mµν is the

matter stress tensor and we adopt units in which 8πG = 1. The leading term in the

expansion of the Guu constraint equation about I+ is

∂umB =
1

4
D2
zN

zz +
1

4
D2
z̄N

z̄z̄ − 1

2
TMuu −

1

4
NzzN

zz, (2.9)

where

TMµν (u, z, z̄) = lim
r→∞

r2T Mµν (r, u, z, z̄) (2.10)

– 5 –
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is the rescaled matter stress tensor which we have assumed falls off like 1
r2 near I+. The

Guz constraint gives

∂uNz = −1

4
(DzD

2
z̄C

z̄z̄ −D3
zC

zz)− TMuz + ∂zmB +
1

16
Dz∂u(CzzC

zz) (2.11)

− 1

4
N zzDzCzz −

1

4
NzzDzC

zz − 1

4
Dz(C

zzNzz −N zzCzz).

Given the Bondi news, mB, Nz and Czz are all determined up to u-independent integration

constants which are discussed below. The I− constraints are

∂vm
−
B =

1

4
D2
zM

zz +
1

4
D2
z̄M

z̄z̄ +
1

2
TMvv +

1

4
M zzMzz, (2.12)

∂vN
−
z =

1

4
(DzD

2
z̄D

z̄z̄ −D3
zD

zz)− TMvz − ∂zm−B +
1

16
Dz∂v(DzzD

zz)

− 1

4
M zzDzDzz −

1

4
MzzDzD

zz − 1

4
Dz(D

zzMzz −M zzDzz). (2.13)

3 Extended BMS± transformations

The extended BMS+ group has been proposed [9–12] as the asymptotic symmetry group

at I+ of gravity on asymptotically flat spacetimes. It is generated by vector fields ξ+ that

locally preserve the asymptotic form (2.1) of the metric at I+

Lξ+gur = O(r−2), Lξ+guz = O(1), Lξ+gzz = O(r), Lξ+guu = O(r−1). (3.1)

All such vector fields near I+ are of the form

ξ+ =
(

1 +
u

2r

)
Y +z∂z −

u

2r
Dz̄DzY

+z∂z̄ −
1

2
(u+ r)DzY

+z∂r +
u

2
DzY

+z∂u + c.c. (3.2)

+ f+∂u −
1

r
(Dzf+∂z +Dz̄f+∂z̄) +DzDzf

+∂r,

where f+ is an arbitrary function on S2 and here and elsewhere we suppress (in some cases

metric-dependent) terms which are further subleading in 1
r and irrelevant to our analysis:

see [9–11] for a recent treatment specifying these terms. Y + must be a conformal Killing

vector on S2 which obeys the equation

∂z̄Y
+z = 0. (3.3)

Globally there are six real vectors fields in an antisymmetric matrix Y z
µν obeying (3.3):

Y z
12 = iz, Y z

13 = −1

2
(1 + z2), Y z

23 = − i
2

(1− z2),

Y z
03 = z, Y z

01 = −1

2
(1− z2), Y z

02 = − i
2

(1 + z2).

(3.4)

These generate the six Lorentz boosts and rotations on I+. Locally there are infinitely

many solutions of the form Y z ∼ zn with poles somewhere on the sphere. In their original

work [1, 2], BMS excluded these singular vector fields. However in this paper we shall

– 6 –
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explore the conjecture of [9–12] that all of these ‘superrotations’ should be included as part

of the asymptotic symmetry group.

The extended BMS+ group is a semi-direct product of superrotations with supertrans-

lations. The supertranslations were recently analyzed in [3, 4]. For notational brevity

we henceforth consider only the superrotation subgroup which has f+ = 0 in (3.2) and

reduces to

ξ+ =
(

1 +
u

2r

)
Y +z∂z −

u

2r
Dz̄DzY

+z∂z̄ −
1

2
(u+ r)DzY

+z∂r +
u

2
DzY

+z∂u + c.c. (3.5)

This maps I+ to itself via

ξ+|I+ = Y +z∂z +
u

2
DzY

+z∂u + c.c. (3.6)

Similarly on I− we have BMS− vector fields parametrized by Y −

ξ− =
(

1− v

2r

)
Y −z∂z +

v

2r
Dz̄DzY

−z∂z̄ −
1

2
(r − v)DzY

−z∂r +
v

2
DzY

−z∂v + c.c. (3.7)

Infinitesimal BMS+ transformations act on the Bondi-gauge metric components as

δY +Czz =
u

2
(DzY

+z +Dz̄Y
+z̄)∂uCzz + LY +Czz −

1

2
(DzY

+z +Dz̄Y
+z̄)Czz − uD3

zY
+z,

δY +Nzz ≡ ∂uδCzz =
u

2
(DzY

+z +Dz̄Y
+z̄)∂uNzz + LY +Nzz −D3

zY
+z. (3.8)

Similarly at I−

δY −Dzz =
v

2
(DzY

−z +Dz̄Y
−z̄)∂vDzz + LY −Dzz −

1

2
(DzY

−z +Dz̄Y
−z̄)Dzz + vD3

zY
−z,

δY −Mzz =
v

2
(DzY

−z +Dz̄Y
−z̄)∂vMzz + LY −Mzz +D3

zY
−z. (3.9)

4 X transformations

BMS± symmetries act on the physical data at I± while preserving certain asymptotic

structures such as the symplectic form [29–31]. They are not themselves symmetries of

gravitational scattering: that is given some solution (Dzz, Czz) of the gravitational scat-

tering problem we cannot get a new one by acting with an element of BMS+ or BMS−.

However for the case of supertranslations, it was argued in [3] that a certain diagonal

subgroup of BMS+×BMS− is a symmetry of gravitational scattering in a suitable neigh-

borhood [32] of flat space. This subgroup is generated by pairs of SL(2, C) Killing vector

fields and supertranslations (Y +, f+;Y −, f−) obeying

Y +z(z) = Y −z(z) ≡ Y z(z), f+(z, z̄) = f−(z, z̄) ≡ f(z, z̄), (4.1)

with the understanding that the coordinate z is constant along null generators of I as they

pass from I− to I+ through spatial infinity i0 in the conformal compactification of the

spacetime. This means that points labelled by the same value of z on I− and I+ lie at

antipodal angles from the origin. This antipodal identification may sound a little odd at

– 7 –
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first, but in fact is required in order for the subgroup (4.1) to contain the usual global

Poincare transformations.

In this paper we are interested in extended BMS+×BMS− transformations. We de-

note by X the subgroup of these transformations generated by vector fields asymptotic to

(ξ+, ξ−) on (I+, I−) subject to (4.1), where now Y z is any of the infinitely many conformal

Killing vectors on the sphere. Elements of X transform a solution (Dzz, Czz) of the grav-

itational scattering problem to a new one (D′zz, C
′
zz) with different final and initial data.

We will argue below that the new data is a new solution of the scattering problem.

4.1 Christodoulou-Klainerman spaces

We are interested in asymptotically flat solutions of the Einstein equation which revert

to the vacuum in the far past and future. In particular we want to remain below the

threshold for black hole formation. We will adopt the rigorous definition of such spaces

given by Christodoulou and Klainerman (CK) [32] who also proved their global existence

and analyzed their asymptotic behavior.

CK studied asymptotically flat initial data in the center-of-mass frame on a maximal

spacelike slice for which the Bach tensor εijkD
(3)
j G

(3)
kl of the induced three-metric decays

like r−7/2 (or faster) at spatial infinity and the extrinsic curvature like r−5/2. This implies

that in normal coordinates about infinity the leading part of the three-metric has the

(conformally flat) Schwarzschild form, with corrections which decay like r−3/2. CK showed

that all such initial data which moreover satisfy a global smallness condition give rise to a

global, i.e. geodesically complete, solution. We will refer to these solutions as CK spaces.

The smallness condition is satisfied in a finite neighborhood of Minkowski space, so this

result established the stability of Minkowski space. Moreover many asymptotic properties

of CK spaces at null infinity were derived in detail, see [33] for a summary. Here we note

that the Bondi news Nzz vanishes on the boundaries of I+ as

Nzz(u) ∼ |u|−3/2, (4.2)

or faster. Similarly on I−

Mzz(v) ∼ |v|−3/2 (4.3)

or faster. The Weyl curvature component Ψ0
2 which in coordinates (2.1) is given by

Ψ0
2(u, z, z̄) ≡ − lim

r→∞
(rCuz̄rzγ

zz̄)

= −mB −
1

4
CzzN

zz +
1

4
(DzDzCzz −Dz̄Dz̄Cz̄z̄) (4.4)

obeys

Ψ0
2|I+

+
= 0, (4.5)

while at u = −∞
Ψ0

2|I+
−

= −GM, (4.6)

where G is Newton’s constant and M is the ADM mass. Similar results pertain to I−.

– 8 –
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In this paper we consider generalizations of pure gravity which include coupling mass-

less matter which dissipates at late (early) times on I+ (I−) so that the system begins and

ends in the vacuum. The CK analysis has not been fully generalized to this case, although

there is no obvious reason analogs of (4.2)–(4.6) might not still pertain to a suitably defined

neighborhood of the gravity+matter vacuum. In the absence of such a derivation (4.2)–

(4.6) will simply be imposed, in the matter-coupled case, as restrictions on the solutions

under consideration.

4.2 Classical gravitational scattering

The classical problem of gravitational scattering is to find the outgoing data at I+ resulting

from the evolution of given data on I−. We take the incoming data to be Dzz(v, z, z̄) and

the outgoing data to be Czz(u, z, z̄). The remaining metric components on I are then

determined by constraints. We consider the geometries in the neighborhood of flat space

defined by CK, which have mB = 0 (m−B = 0) at I+
+ (I−− ). In particular we remain below

the threshold for black hole formation.

A CK geometry, as described in (t, r, θ, φ) coordinates, does not quite provide a solu-

tion to this scattering problem. To find the in (out) data, one must perform a coordinate

transformation to ingoing (outgoing) Bondi coordinates and determine Dzz (Czz). This

procedure is not unique: the coordinate transformations are ambiguous up to extended

BMS± transformations on I+ or I−. Dzz and Czz are not invariant under these transfor-

mations. Hence a solution of the scattering problem requires a prescription for fixing this

ambiguity. A prescription to fix this ambiguity is to demand that

Dzz|I−+ = Czz|I+
−

= 0. (4.7)

It was shown in [3] that the falloffs (4.2)–(4.6) imply this is always possible. One may then

integrate the constraint equations to determine Dzz and Czz, which will not in general

vanish at I+
+ and I−− .

This prescription does not give all near-flat solutions of the scattering problem. In-

deed, all such solutions are in the center-of-mass frame and have vanishing ADM three-

momentum. However, given any solution of the scattering problem obeying (4.7), a new

one with nonzero three-momentum may be obtained simply by acting with the boost ele-

ment of X . More generally, our prescription to define gravitational scattering is to take all

solutions obtained by doing arbitrary X transformations on the solutions obeying (4.7). We

shall refer to such scattering geometries, complete with I± data, as extended CK spaces.

Acting with an arbitrary finite conformal transformation w(z) followed by an arbitrary

finite supertranslation f on (4.7) leads to the asymptotic behaviors for large negative u

and positive v7

Cww(u,w, w̄) ∼ −2u(∂wz)
1/2∂2

w(∂wz)
−1/2 − 2D2

wf +O(u−3/2),

Dww(v, w, w̄) ∼ 2v(∂wz)
1/2∂2

w(∂wz)
−1/2 + 2D2

wf +O(v−3/2). (4.8)

7Interestingly the news tensor at the boundary I+
− obeys Nww|I+− = −2(∂wz)

1/2∂2
w(∂wz)

−1/2, which is

the transformation law for a 2D CFT stress tensor.

– 9 –
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We also have the relations at all the boundaries of I±

∂z̄Nzz|I+
±

= 0,

∂z̄Mzz|I−± = 0,

[D2
z̄Czz −D2

zCz̄z̄]I+
±

= 0,

[D2
z̄Dzz −D2

zDz̄z̄]I−±
= 0. (4.9)

5 X Ward identity

5.1 Quantum states

In the quantum theory, incoming (outgoing) states on I− (I+) are presumed to form

representations of extended BMS− (BMS+). In this subsection we will describe the action

of an infinitesimal Virasoro transformation δY parameterized by Y z on a generic Fock-basis

in-state. For I− we define

Q−(Y −)|in〉 = −iδY − |in〉, (5.1)

and similarly we define Q+(Y +) on I+.8 Q− may be decomposed into a hard and soft

part as

Q− = Q−H +Q−S , (5.2)

where Q−H generates the diffeomorphism ξ−(Y −) on the incoming hard particles, and Q−S
creates a soft graviton. Let us denote an in-state comprised of n particles with energies Ek
incoming at points zk for k = 1, . . . , n on the conformal S2 by

|z1, z2, . . .〉. (5.3)

Then the hard action is simply to act with ξ−µ∂kµ on each scalar particle

Q−H |z1, z2, . . .〉 = −i
∑
k

(
Y −z(zk)∂zk −

Ek
2
DzY

−z(zk)∂Ek

)
|z1, z2, . . .〉. (5.4)

Here −(1 +Ek∂Ek) arises from the Fourier transform of v∂v, and the coefficient of DzY
−z

is shifted by one half as in [6] due to the r∂r term in (3.7). For spinning particles we must

replace Y −z(zk)∂zk with the Lie derivative LY −(zk).
9

To determine Q−S , note that the inhomogeneous transformation of the incoming Bondi

news Mzz is

δY −Mzz(v, z, z̄) = D3
zY
−z. (5.5)

The action of Q−S on a state must implement this shift. It follows that

[Q−S ,Mzz] = −iD3
zY
−z. (5.6)

8Explicit expressions for the proper BMS± charges as integrals of fields on I were worked out in detail

in [4] and shown to generate the proper BMS± symmetries. Expressions for the Virasoro charges Q± are

given in [9–11], but were not shown to generate the symmetries. In this paper such explicit expressions will

not be needed: transformation laws for the states suffice.
9More explicitly if we have a particle of helicity h, and Rindler energy −iv∂v = ER, the parentheses

in (5.4) are of the form Y z∂z + Y z̄∂z̄ + hRDzY
z + hLDz̄Y

z̄ where for helicity h, the ‘conformal weights’

(see e.g. [6]) are hR = h
2
− 1

2
E∂E = 1

2
(h+ 1 + iER), hL = −h

2
− 1

2
E∂E = 1

2
(−h+ 1 + iER).

– 10 –
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Using the commutator [29–31]

[Mz̄z̄(v, z, z̄),Mww(v′, w, w̄)] = 2iγzz̄δ
2(z − w)∂vδ(v − v′), (5.7)

one concludes that, up to a total derivative commuting with Mzz,

Q−S =
1

2

∫
I−
dvd2zD3

zY
−zvM z

z̄. (5.8)

This reproduces the linear term in the full expression for the charge given in [9–11].10 Q−S
is a zero-frequency operator (because of the v integral) linear in the metric fluctuation.

Acting on the in-vacuum, it creates a soft graviton with polarization tensor proportional

to D3
zY
−z. The explicit form of the momentum space creation operator will be constructed

below in subsection 5.3. Altogether then Q− maps the n-particle states into themselves

plus an n-hard+1-soft state:

Q−|z1, z2, . . .〉 = −i
n∑
k=1

(
Y −z(zk)∂zk −

Ek
2
DzY

−z(zk)∂Ek

)
|z1, z2, . . .〉 (5.9)

+Q−S |z1, z2, . . .〉.

Similarly Virasoro transformations on I+ are decomposed as

Q+ = Q+
H +Q+

S (5.10)

and we denote out-states comprised of m particles with energies Ek outgoing at points zk
for k = n+ 1, . . . n+m by

〈zn+1, zn+2, . . . |. (5.11)

One finds

〈zn+1, zn+2, . . . |Q+ = i

n+m∑
k=n+1

(
Y +z(zk)∂zk −

Ek
2
DzY

+z(zk)∂Ek

)
〈zn+1, zn+2, . . . | (5.12)

+ 〈zn+1, zn+2, . . . |Q+
S ,

where

Q+
S = −1

2

∫
I+

dud2zD3
zY

+zuN z
z̄. (5.13)

5.2 X -invariance of S

In this section we derive a quantum Ward identity from the assumption that X -invariance

survives quantization. The quantum version of infinitesimal X invariance of classical grav-

itational scattering is, using (4.1)

〈out|Q+(Y )S − SQ−(Y )|in〉 = 0, (5.14)

10The formula in [9–11] differs by a total derivative which improves the large |v| behavior and may be

essential in a more general context. The slightly simpler expression here is sufficient for the present purpose.

– 11 –
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for any pair of in and out states (|in〉, |out〉). Let us define the normal-ordered soft graviton

insertion

: QS(Y )S := Q+
S (Y )S − SQ−S (Y ). (5.15)

(5.14) is then the Ward identity

〈zn+1, zn+2, . . . | : QSS : |z1, z2, . . .〉 =

− i
n+m∑
k=1

(
Y z(zk)∂zk −

Ek
2
DzY

z(zk)∂Ek

)
〈zn+1, zn+2, . . . |S|z1, z2, . . .〉,

(5.16)

where the k sum now runs over both in and out particles and again for spinning particles the

Lie derivative replaces the ordinary one on the right hand side. This relates the derivatives

of any S-matrix element to the same S-matrix element with a particular soft graviton

insertion.

5.3 Mode expansions

We wish to express Q±S in terms of standard momentum space soft graviton creation and

annihilation operators. The flat space graviton mode expansion is11

hout
µν (x) =

∑
α=±

∫
d3q

(2π)3

1

2ωq

[
εα∗µν(~q)aout

α (~q)eiq·x + εαµν(~q)aout
α (~q)†e−iq·x

]
, (5.17)

where q0 = ωq = |~q|, α = ± are the two helicities and

[aout
α (~q), aout

β (~q′)†] = 2ωqδαβ(2π)3δ3
(
~q − ~q′

)
. (5.18)

The outgoing gravitons with momentum q correspond to final-state insertions of aout
α (~q).

It is convenient to parametrize the graviton four-momentum by (ωq, w, w̄)

qµ =
ωq

1 + ww̄
(1 + ww̄,w + w̄, i (w̄ − w) , 1− ww̄) , (5.19)

with polarization tensors

ε±µν = ε±µε±ν ,

ε+µ(~q) =
1√
2

(w̄, 1,−i,−w̄) ,

ε−µ(~q) =
1√
2

(w, 1, i,−w) . (5.20)

These obey ε±µqµ = ε±µµ = 0 and

ε+
z̄ (~q) = ∂z̄x

µε+
µ (~q) =

√
2r (1 + zw̄)

(1 + zz̄)2 , ε−z̄ (~q) = ∂z̄x
µε−µ (~q) =

√
2rz (w − z)
(1 + zz̄)2 . (5.21)

In retarded Bondi coordinates

Cz̄z̄(u, z, z̄) = 2 lim
r→∞

1

r
hout
z̄z̄ (r, u, z, z̄). (5.22)

11Here we take gµν = ηµν +
√

32πGhµν = ηµν + 2hµν .

– 12 –
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Using hout
z̄z̄ = ∂z̄x

µ∂z̄x
νhout

µν and the mode expansion

Cz̄z̄ = 2 lim
r→∞

1

r
∂z̄x

µ∂z̄x
ν
∑
α=±

∫
d3q

(2π)3

1

2ωq

[
εα∗µν(~q)aout

α (~q)e−iωqu−iωqr(1−cos θ) + h.c.
]
, (5.23)

where θ is the angle between ~x and ~q. This integral is dominated for large r by the

contribution near θ=0:

Cz̄z̄ = − i

4π2
ε̂+
z̄z̄

∫ ∞
0

dωq[a
out
− (ωqx̂)e−iωqu − aout

+ (ωqx̂)†eiωqu]. (5.24)

Here, x̂ is parameterized by (z, z̄)

x̂ ≡ ~x

r
=

1

1 + zz̄
(z + z̄, i(z̄ − z), 1− zz̄) (5.25)

and

ε̂+
z̄z̄ =

∂z̄x
µ∂z̄x

ν

r2
ε+
µν =

2

(1 + zz̄)2
. (5.26)

Define:

Nω
z̄z̄ ≡

∫
du eiωu∂uCz̄z̄. (5.27)

Then from the large r saddle point expansion of (5.23), we have:

Nω
z̄z̄ = − 1

2π
ε̂+
z̄z̄ωa

out
− (ωx̂),

N−ωz̄z̄ = − 1

2π
ε̂+
z̄z̄ωa

out
+ (ωx̂)†,

(5.28)

with ω > 0 in both cases. We define N
(1)
z̄z̄ as:

N
(1)
z̄z̄ ≡

∫
duuNz̄z̄

= − lim
ω→0

i

2
(∂ωN

ω
z̄z̄ + ∂−ωN

−ω
z̄z̄ )

=
i

4π
ε̂+
z̄z̄ lim
ω→0

(1 + ω∂ω)[aout
− (ωx̂)− aout

+ (ωx̂)†].

(5.29)

A mode expansion analogous to (5.24) can be defined for Dz̄z̄ on I−

Dz̄z̄ = − i

4π2
ε̂+
z̄z̄

∫ ∞
0

dωq[a
in
−(ωqx̂)e−iωqv − ain

+(ωqx̂)†eiωqv], (5.30)

from which we find

Mω
z̄z̄ = − 1

2π
ε̂+
z̄z̄ωa

in
−(ωx̂),

M−ωz̄z̄ = − 1

2π
ε̂+
z̄z̄ωa

in
+(ωx̂)†,

(5.31)

and

M
(1)
z̄z̄ = − lim

ω→0

i

2
(∂ωM

ω
z̄z̄ + ∂−ωM

−ω
z̄z̄ )

=
i

4π
ε̂+
z̄z̄ lim
ω→0

(1 + ω∂ω)[ain
−(ωx̂)− ain

+(ωx̂)†].

(5.32)

– 13 –
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We are interested in the matrix element

〈out|N (1)
z̄z̄ S + SM (1)

z̄z̄ |in〉

=
i

4π
ε̂+
z̄z̄ lim
ω→0

(1 + ω∂ω)〈out|(aout
− (ωx̂)− aout

+ (ωx̂)†)S + S(ain
−(ωx̂)− ain

+(ωx̂)†)|in〉

=
i

4π
ε̂+
z̄z̄ lim
ω→0

(1 + ω∂ω)〈out|aout
− (ωx̂)S − Sain

+(ωx̂)†|in〉,

(5.33)

which is 〈out|S|in〉 with soft graviton insertions.12 Such insertions generically have Wein-

berg poles behaving as 1
ω . However the prefactor 1 + ω∂ω projects out this pole, leaving

the subleading O(ω0) soft factor. Equation (5.33) and its hermitian conjugate are related

to the QS matrix element by

〈out| : QSS : |in〉

= −1

2

∫
d2zγzz̄D3

zY
z〈out|N (1)

z̄z̄ S + SM (1)
z̄z̄ |in〉

= − i

8π
lim
ω→0

(1 + ω∂ω)

∫
d2zγzz̄D3

zY
z ε̂+
z̄z̄〈out|aout

− (ωx̂)S − Sain
+(ωx̂)†|in〉.

(5.34)

Given the asymptotic behavior (4.8) near i0, the boundary relation Nz̄z̄|I+
−

= −Mz̄z̄|I−+
establishes a correspondence between the in and out modes, such that the contributions to

the matrix element (5.34) from the aout
− (ωx̂) and −ain

+(ωx̂)† insertions are equal.

6 From soft theorem to Virasoro symmetry

In this section we begin by assuming the subleading soft relation13

lim
ω→0

(1+ω∂ω)〈zn+1, zn+2, . . . |a−(q)S|z1, z2, . . .〉 = S(1)−〈zn+1, zn+2, . . . |S|z1, z2, . . .〉, (6.1)

with

S(1)− = −i
∑
k

pkµε
−µνqλJkλν
pk · q

. (6.2)

Here Jkλν ≡ Lkλν + Skλν is the total ingoing orbital+spin angular momentum of the kth

particle which obeys the global conservation law
∑
Jkλν = 0. We note the (1 + ω∂ω)

prefactor on the left hand side projects out the would-be Weinberg pole accompanying a

soft insertion. For notational brevity we consider the contribution for negative polarization:

the general formula has an S(1) with a general polarization tensor replacing (6.2). We will

show that (6.1) implies the Ward identity (5.16), which in turn is equivalent to infinitesimal

X -invariance of the S-matrix. Although the relation (6.1) potentially has wider validity,

12Here we assume that |in〉 and 〈out| states contain no soft gravitons.
13A single soft graviton insertion has the ω expansion

〈zn+1, zn+2, . . . |a−(q)S|z1, z2, . . .〉 =
(
S(0)− + S(1)−

)
〈zn+1, zn+2, . . . |S|z1, z2, . . .〉+O(ω).

– 14 –
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the only case in which it is known to be a theorem is tree-level gravitons [13]. Hence only

for this case do we claim the results of this section imply a Virasoro symmetry.

Gauge invariance provides an important check on this formula. Amplitudes must

vanish for pure gauge gravitons with polarizations

εµνΛ = qµΛν + qνΛµ (6.3)

for any Λ. Inserting this into (6.2) we find

iS(1)(εΛ) = qµΛν
∑
k

Jkµν +
∑
k

pk · ΛqµqνJkµν
pk · q

. (6.4)

The first terms vanishes by global angular momentum conservation, while the second van-

ishes by antisymmetry of Jkµν . This is very similar to the gauge invariance of the Wein-

berg pole, which vanishes due to global energy-momentum conservation or equivalently

translational symmetry. The Weinberg soft theorem implies that this global translational

symmetry is promoted to a local supertranslational symmetry on the sphere [4], because

there is one symmetry for every angle ~q. In this section we will see a parallel story for

rotational invariance: the soft relation (6.1) implies that rotations are promoted to a local

superrotational - equivalently Virasoro - symmetry on the sphere.

The first step is to write the hard particle momenta pk, the soft graviton momentum

q and chosen polarization ε−µν = ε−µε−ν in terms of the points zk and z at which they

arrive on the asymptotic S2 and their energies Ek, ω

pµk =
Ek

1 + zkz̄k
(1 + zkz̄k, z̄k + zk, i(z̄k − zk), 1− zkz̄k) ,

qµ =
ω

1 + zz̄
(1 + zz̄, z̄ + z, i(z̄ − z), 1− zz̄) ,

ε−µ =
1√
2

(z, 1, i,−z).

(6.5)

One then finds for the orbital terms

S(1)− =
∑
k

(
Ek(z − zk)(1 + zz̄k)

(z̄k − z̄)(1 + zkz̄k)
∂Ek +

(z − zk)2

(z̄k − z̄)
∂zk

)
. (6.6)

The spin term will be added in below. This expression obeys

γzz̄D3
z(ε̂

+
z̄z̄S

(1)−) = −2π
∑
k

(
Dzδ

(2)(z − zk)Ek∂Ek + 2δ(2)(z − zk)∂zk
)
. (6.7)

Multiplying both sides of (6.1) by D3
zY

z ε̂+z
z̄ and integrating over the soft graviton angle z

gives
〈zn+1, zn+2, . . . | : QSS : |z1, z2, . . .〉 =

− i
∑
k

(
Y z(zk)∂zk −

Ek
2
DzY

z(zk)∂Ek

)
〈zn+1, zn+2, . . . |S|z1, z2, . . .〉,

(6.8)

which is exactly the Ward identity (5.16) arising from an asymptotic Virasoro symmetry,

minus the so-far-omitted spin terms.

– 15 –
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The spin contribution comes from evaluating:

S
(1)−
S = −i

∑
k

pkλε
−λνqµSkµν
pk · q

. (6.9)

In terms of the helicity h defined by

hpµ = −1

2
εµνλρS

νλpρ, (6.10)

one finds

S
(1)−
S =

∑
k

(z − zk)(1 + zz̄k)

(z̄ − z̄k)(1 + zkz̄k)
hk, (6.11)

while the third derivative obeys

γzz̄D3
z(ε̂

+
z̄z̄S

(1)−
S ) = 2π

∑
k

hkDzδ
(2)(z − zk). (6.12)

Hence the spin contribution for the helicity states corrects (6.8) to:

〈zn+1, zn+2, . . . | : QSS : |z1, z2, . . .〉 = −i
∑
k

(
Y z(zk)∂zk−

Ek

2
DzY

z(zk)∂Ek
+
hk
2
DzY

z(zk)

)
(6.13)

〈zn+1, zn+2, . . . |S|z1, z2, . . .〉,

in agreement with the spin-corrected version of (5.16).

In conclusion the soft relation (6.1), whenever valid, implies a Virasoro symmetry of

the quantum gravity S-matrix.
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