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I use the classical Hamilton-Jacobi Equation to formulate a definition for operator expectation
values consistent with those for quantum operators.

In “Wavefunctions and the Hamilton-Jacobi Equa-
tion,” I showed that performing a canonical change of
variables from (qi, pi) to constants (Qi, Pi):

piq̇i −H(q, p, t) = PiQ̇i −K(Q,P, t) +
dF

dt
(1)

for F = S(q, P, t)− PiQi, gave:

H = −∂S

∂t
pi =

∂S

∂qi
Qi =

∂S

∂Pi
. (2)

when K = 0. Here dS
dt = L and the function ei

S
~ had

the property that ordinary multiplication by the value
of H or pj was equivalent to acting with a differential
operator:

H · ei
S
~ = − ∂S

∂t
ei
S
~ = i~∂te

iS~

pj · ei
S
~ = ∂S

∂qj
ei
S
~ = ~

i
∂qj e

iS~ .

(3)

In that paper, I went on to study how classical equa-
tions differ by a term of order ~. Here, I will focus on the
one-dimensional case and instead look at a new definition
for the expectation value of an operator:

〈Ô〉 ≡

∫
P(P )dPdq

{
e−i

S(q,P,t)
~ Ôei

S(q,P,t)
~

}
∫

dq
(4)

where P(P ) is a normalized, real probability distribution

over the classical constant P , S is real, and Ô is a hermi-
tian operator found by promoting the classical function
O(q, p) to O(q, ~i ∂q).

I. QUADRATIC TERMS

Since S is defined so that p = ∂S
∂q , one finds that:

〈p̂2〉 =
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P(P )dPdq
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−i S(q,P,t)

~ ( ~
i
∂
∂q

)2e
i
S(q,P,t)

~

}
∫
dq

=

∫
P(P )dPdq ~

i
∂
∂q

{
e
−i S(q,P,t)

~ ~
i
∂
∂q
i
S(q,P,t)

~

}
∫
dq

−
( ~
i
∂
∂q

e
−i S(q,P,t)

~ )( ~
i
∂
∂q

e
i
S(q,P,t)

~ )∫
P(P )dPdq

=
− ~
i

∫
P(P )dP

∂S(q,P,t)
∂q

|q=+∞
q=−∞∫

dq

+
∫
P(P )dPdq(

∂S(q,P,t)
∂q

)2∫
dq

(5)

Under certain conditions for S, the boundary term can
cancel or vanish. The suppression by

∫
dq in the denom-

inator, however, can eliminate this term even for finite
∂S
∂q , when the range of q is taken to infinity. The result is

that 〈p̂2〉 = 〈p2〉. At any time, the operator expectation
value for p̂2, as defined in Equation 4, is equal to the
classical spatial average of the momentum squared for
particles distributed with probability P(P ) over classical
orbits with constant P .

Higher powers of p̂ will give similar boundary terms
when integrated by parts, so that 〈p̂n〉 = 〈pn〉. Products
of p̂ with q include extra terms. For instance:

〈qp̂− p̂q〉 =

∫
P(P )dPdq

{
e
−i S(q,P,t)

~ (q ~
i
∂
∂q
− ~
i
∂
∂q

q)e
i
S(q,P,t)

~

}
∫
dq

=

∫
P(P )dPdq

{
e
−i S(q,P,t)

~ (q ~
i
∂
∂q
− ~
i
−q ~

i
∂
∂q

)e
i
S(q,P,t)

~

}
∫
dq

= i~
(6)

which agrees with the quantum commutation relation
[q̂, p̂] = i~ for the position and momentum operators.

II. HERMITICITY REQUIREMENT

A classical observable which does not depend explicitly
on time can be described as a function of position and
momentum: O(q, p) = O(q, ∂S∂q ). The exponentials on

either side of Ô in Equation 4 allow one to replace ∂S
∂q in

O with a partial derivative ~
i

∂
∂q on either the left or the

right.

The differential operator Ô must be Hermitian to be
consistent, i.e. the expectation value of the operator
1
2 (qnp̂m + p̂mqn) needs both terms to agree with the clas-

sical 〈qnpm〉. Consider Ô = −~2[f(q) ∂2

∂q2 + ∂2

∂q2 f(q)]:
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〈Ô〉 =
−~2

∫
P(P )dPdq

{
e
−i S(q,P,t)

~ [f(q) ∂
2

∂q2
+ ∂2

∂q2
f(q)]e

i
S(q,P,t)

~

}
∫
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=
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∫
P(P )dPdq

{
∂
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}
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+
~2

∫
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{
∂
∂q

e
−i S(q,P,t)

~ ∂
∂q

[f(q)e
i
S(q,P,t)

~ ]

}
∫
dq

=

∫
P(P )dPdq

{
(
∂S(q,P,t)

∂q
)2f(q)+i~ ∂S(q,P,t)

∂q
f ′(q)

}
∫
dq

+

∫
P(P )dPdq

{
(
∂S(q,P,t)

∂q
)2f(q)−i~ ∂S(q,P,t)

∂q
f ′(q)

}
∫
dq

= 〈2f(q)( ∂S(q,P,t)
∂q

)2〉
(7)

where the symmetry of Ô led to the cancellation of terms
depending on f ′(q).

III. POISSON BRACKET TO COMMUTATOR

One often considers the promotion of a poisson bracket
(when there are no constraints) to a quantum commuta-
tor as a rule of thumb. In the context of the expec-
tation values considered here, one sees that this associa-
tion comes in two steps: first, the canonical commutation
relations allowed me to construct the classical function
S(q, P, t); second, the expectation value defined in Equa-
tion 4 allowed me to promote classical multiplication to
a differential operator.

For functions that can be Taylor expanded in q and p:

〈{qnpm, qrps}〉 = (ns−mr)〈qn+r−1pm+s−1〉
= −i

4~ 〈[q
np̂m + p̂mqn, qrp̂s + p̂sqr]〉 (8)

the expectation value of the Poisson bracket is propor-
tional to the expectation value of the commutator of the
associated Hermitian operators.

As a result, I can use the classical equations of motion
to compute the time derivative of a classical operator:

d

dt
O(q, p) = {O, H} (9)

and, from Equation 8, conclude that:

d

dt
〈Ô〉 =

−i
~
〈[Ô, Ĥ]〉 (10)

since the time derivatives of the exponential factors can-
cel. Equation 10 is known as Ehrenfest’s Theorem.

IV. COMPLEX PHASE VS. REAL
EXPONENTIAL

Up until this point, the meaning of the constant ~ has
been unspecified. Its units are required to be the same as
Planck’s constant. The definition of the phase factors was
designed to make the results consistent with quantum

mechanics. The ei
S(q,P,t)

~ is reminiscent of e−i
Ht
~ . Note

that the classical hamiltonian is given by H = −∂S
∂t .

One could opt to consider only real functions, as op-
posed to complex ones, by taking ~→ −iε. This changes

ei
S(q,P,t)

~ to e−
S(q,P,t)

ε , which is reminiscent of Wick rotat-
ing the time dimension when computing path integrals.

While having ~ be real makes the expectation value
look like it involves a unitary transformation of Ô, imag-
inary ~ gives something similar to a statistical mechanics
partition function.
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