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I show a quick route to the n = `+1 wave functions and energies for the Hydrogen atom using a
method which is also applied to find the ground state of the simple harmonic oscillator.

In this paper, I modify the procedure normally used to
change between gauges for a magnetic field, and employ
it as a quick route to finding particular solutions to the
Schrödinger Equation for 1/r and quadratic potentials. I
will start the radial Schrödingier Equation for Hydrogen:
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Here, u`(r) obeys an e↵ective one-dimensional Hamil-
tonian with the restriction that u`(0) = 0. A three-
dimensional solution to the full Schrödingier Equation
is then:

 =
u`
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Y`m. (2)

In the presence of a magnetic field, the Hamiltonian for
an electron would be modified by changing pi ! pi+

e
cAi

where ~A is the vector potential: ~r ⇥ ~A = ~B. Changing
~A by a gradient ~r� does not modify ~B but will add a
phase to the wavefunction, such that the new solution is:
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For motion along a single direction x̂ with no magnetic
field, we can change the x̂ component of the conventional

vector potential ~A = 0 by an arbitrary function c
ef(x).

The new vector potential c
ef(x)x̂ will still have zero curl

and the solution to the Schrödingier Equation:
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will also describe the motion of an electron in a potential
V with no magnetic field. Using Equation 3, the solution
to the original Schrödingier Equation will be given by:
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The radial Schrödingier Equation for Hydrogen is an
example where the introduction of a vector potential-like
term can actually simplify finding u` for the ground state.
Let:
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where I use the notation H̃ since I will not restrict k
to being real. Although this makes H̃ non-hermitian,

the equation for u` in terms of ũ` is still valid, and it is
useful to think of it as a generalized change in gauge.
Expanding H̃ and arranging p to the right of 1/r in

the expansion of the squared term gives:
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For k = {i~`,�i~(` + 1)} the 1/r2 terms in Equation 9
cancel. These choices for k would give:

u` = {ũ` · r�`, ũ` · r(`+1)}. (8)

The restriction u`(0) = 0 leads us to choose the second
option: k = �i~(`+1). This gives a di↵erential equation
for the stationary states ũ`:
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for which it is seen that an exponential solution e↵r can

be chosen such that the 1/r terms cancel: ↵ = �me2

~2(`+1) .

I have thus found a solution with energy E = �~2↵2
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�me4

2~2(`+1)2 . The corresponding wave functions for ` =

0, 1, 2 . . . are:

 = Ar` exp


�r

(`+ 1)a0

�
Y`m (10)

for some normalization constant A and Bohr radius a0 =
~2

me2 . These correspond to the n = ` + 1 states of the
Hydrogen atom.
This derivation takes advantage of a special cancella-

tion allowed for a 1/r potential that makes an exponential
solution to the resulting di↵erential equation apparent.
This technique of introducing an e↵ective gauge can also
be applied to a quadratic potential:
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has  0 = const. as a solution with energy E = ~!
2 . Equa-

tion 5 gives a solution to the original Hamiltonian:
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which is the ground state of the simple harmonic oscilla-
tor.
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