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I show a quick route to the n = £ + 1 wave functions and energies for the Hydrogen atom using a
method which is also applied to find the ground state of the simple harmonic oscillator.

In this paper, I modify the procedure normally used to
change between gauges for a magnetic field, and employ
it as a quick route to finding particular solutions to the
Schrodinger Equation for 1/r and quadratic potentials. I
will start the radial Schrodingier Equation for Hydrogen:
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Here, uy(r) obeys an effective one-dimensional Hamil-
tonian with the restriction that ug(0) = 0. A three-
dimensional solution to the full Schrédingier Equation
is then:
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In the presence of a magnetic field, the Hamiltonian for
an election would be modified by cjlanging Pi = pi +2A;
where A is the vector potential: V x A = B. Changing
A by a gradient VA does not modify B but will add a
phase to the wavefunction, such that the new solution is:
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For motion along a single direction & with no magnetic
field, we can change the & component of the conventional
vector potential A = 0 by an arbitrary function Sf(x).
The new vector potential € f(z)Z will still have zero curl
and the solution to the Schrodingier Equation:
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will also describe the motion of an electron in a potential
V with no magnetic field. Using Equation 3, the solution
to the original Schrodingier Equation will be given by:
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The radial Schrédingier Equation for Hydrogen is an
example where the introduction of a vector potential-like
term can actually simplify finding u, for the ground state.
Let:
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where 1 use the notation H since I will not restrict k&
to being real. Although this makes H non-hermitian,
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the equation for uy in terms of i, is still valid, and it is
useful to think of it as a generalized change in gauge.

Expanding H and arranging p to the right of 1/r in
the expansion of the squared term gives:
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For k = {ihf, —ih(¢ + 1)} the 1/r? terms in Equation 9
cancel. These choices for k£ would give:

Up = {ﬂg . T_e, Uy - 7,(6—&-1)}. (8)

The restriction ug(0) = 0 leads us to choose the second
option: k = —ihi(¢+1). This gives a differential equation
for the stationary states wy:
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for which it is seen that an exponential solution e*” can

be chosen such that the 1/r terms cancel: a = ﬁf)
I have thus found a solution with energy F = 72;0‘2 =
%. The corresponding wave functions for ¢ =
0,1,2... are:
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for some normalization constant A and Bohr radius ag =
2
"762. These correspond to the n = ¢ 4 1 states of the

Hydrogen atom.

This derivation takes advantage of a special cancella-
tion allowed for a 1/r potential that makes an exponential
solution to the resulting differential equation apparent.
This technique of introducing an effective gauge can also
be applied to a quadratic potential:
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has ¢’ = const. as a solution with energy F = . Equa-
tion 5 gives a solution to the original Hamiltonian:

mwx 2

= } (12)

which is the ground state of the simple harmonic oscilla-
tor.

P = Aexp {; /imwxdx} = Aexp {
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