Wavefunctions and the Hamilton-Jacobi Equation

Sabrina Gonzalez Pasterski

(Dated: September 8, 2013)
I show how the differential equation governing a distribution over classical trajectories is consistent with the quantum Schrödinger Equation in the $\hbar \rightarrow 0$ limit.

In classical mechanics, a change of variables from $\left(q_{i}, p_{i}\right)$ to $\left(Q_{i}, P_{i}\right)$ produces equivalent equations of motion when:

$$
\begin{equation*}
p_{i} \dot{q}_{i}-H(q, p, t)=P_{i} \dot{Q}_{i}-K(Q, P, t)+\frac{d F}{d t} \tag{1}
\end{equation*}
$$

for a new Hamiltonian K. Let $F=S(q, P, t)-P_{i} Q_{i}$, then:

$$
\begin{equation*}
p_{i} \dot{q}_{i}-H(q, p, t)=-\dot{P}_{i} Q_{i}-K+\frac{\partial S}{\partial t}+\frac{\partial S}{\partial q_{i}} \dot{q}_{i}+\frac{\partial S}{\partial P_{i}} \dot{P}_{i} . \tag{2}
\end{equation*}
$$

Taking $\left(q_{i}, P_{i}\right)$ as the independent variables means Equation 2 is satisfied for:

$$
\begin{equation*}
H=K-\frac{\partial S}{\partial t} \quad p_{i}=\frac{\partial S}{\partial q_{i}} \quad Q_{i}=\frac{\partial S}{\partial P_{i}} \tag{3}
\end{equation*}
$$

If $K=0$, then Q_{i} and P_{i} are constants and $H=-\frac{\partial S}{\partial t}$, known as the Hamilton-Jacobi Equation. Here

$$
\begin{equation*}
\frac{d S}{d t}=\frac{\partial S}{\partial t}+\frac{\partial S}{\partial q_{i}} \dot{q}_{i}=p_{i} \dot{q}_{i}-H=L \tag{4}
\end{equation*}
$$

showing that $S(q, P, t)$ can be thought of as an action. The only dynamic variables are q_{i} and $t . P_{i}$ and $Q_{i}=\frac{\partial S}{\partial P_{i}}$ are the $2 N$ constants needed to specify the trajectory of a classical particle. To solve for the trajectory of a particle using the Hamilton-Jacobi Equation, $S(q, P, t)$ is found and then the constants $Q_{i}=\frac{\partial S}{\partial P_{i}}$ provide implicit expressions for $q_{i}(t)$.

Now consider $e^{i \frac{S}{\hbar}}$, where the constant \hbar makes the phase dimensionless:

$$
\begin{align*}
& H \cdot e^{i \frac{S}{\hbar}}=-\frac{\partial S}{\partial t} e^{i \frac{S}{\hbar}}=i \hbar \partial_{t} e^{i \frac{S}{\hbar}} \\
& p_{j} \cdot e^{i \frac{S}{\hbar}}=\frac{\partial S}{\partial q_{j}} e^{i \frac{S}{\hbar}}=\frac{\hbar}{i} \partial_{q_{j}} e^{i \frac{S}{\hbar}} . \tag{5}
\end{align*}
$$

Acting twice on $e^{i \frac{S}{\hbar}}$ with $\hat{p}_{j}=\frac{\hbar}{i} \partial_{q_{j}}$ introduces corrections of order $\mathcal{O}(\hbar)$ to the value of $p_{j}^{2} \cdot e^{i \frac{S}{\hbar}}$:

$$
\begin{align*}
\hat{p}_{j}^{2} e^{i \frac{S}{\hbar}}=\left(\frac{\hbar}{i} \partial_{q_{j}}\right)^{2} e^{i \frac{S}{\hbar}} & =\left[\left(\frac{\partial S}{\partial q_{j}}\right)^{2}+\frac{\hbar}{i} \frac{\partial^{2} S}{\partial q_{j}^{2}}\right] e^{i \frac{S}{\hbar}} \tag{6}\\
& =\left[p_{j}^{2}+\frac{\hbar}{i}\left(\frac{\partial p_{j}}{\partial q_{j}}\right)_{P}\right] e^{i \frac{S}{\hbar}}
\end{align*}
$$

where the partial derivative of the momentum p_{j} with respect to the coordinate q_{j} is non-zero since the transformed momenta P_{i} are kept constant during differentiation, not the original momenta p_{i}. In the limit:

$$
\begin{equation*}
\left|\hbar \frac{\partial^{2} S}{\partial q_{j}^{2}}\right| \ll\left(\frac{\partial S}{\partial q_{j}}\right)^{2} \tag{7}
\end{equation*}
$$

multiplying $H(q, p, t) \cdot e^{i \frac{S}{\hbar}}$ can be approximated as acting with the operator $\hat{H}\left(q, \frac{\hbar}{i} \partial_{q_{j}}, t\right) e^{i \frac{S}{\hbar}}$. This gives:

$$
\begin{equation*}
i \hbar \partial_{t} e^{i \frac{S}{\hbar}} \simeq \hat{H}\left(q, \frac{\hbar}{i} \partial_{q_{j}}, t\right) e^{i \frac{S}{\hbar}} \tag{8}
\end{equation*}
$$

which is a linear differential equation that holds for any set of P_{i} in $S(q, P, t)$. If I define a function:

$$
\begin{equation*}
\Phi(q, t)=\int \mathbb{P}\left(P_{i}\right) e^{i \frac{S(q, P, t)}{\hbar}} \mathrm{d} P_{i} \tag{9}
\end{equation*}
$$

where $\mathbb{P}\left(P_{i}\right)$ is a probability distribution over trajectories that pass through the point (q, t) with different velocities, then $\Phi(q, t)$ also satisfies Equation 8. That equation has the same form as the Schrödinger Equation for the quantum wave function, substituting $\Phi(q, t) \rightarrow \Psi(q, t)$.

A function $\Phi(q, t)$ analogous to the quantum wavefunction $\Psi(q, t)$ thus results from taking an array of particles traveling along classical trajectories and weighting the phase $e^{i \frac{S}{\hbar}}$ at each position \vec{q} and time t with a probability distribution for the constants P_{i} that distinguish trajectories passing through (q, t) with different velocities (see Figure 1).

FIG. 1. Set of classical free particle trajectories through different (x, t) on a surface of constant P with $\dot{x}>0$.

For the case of the free particle, the limit defined in Equation 7 even holds for $\hbar \nrightarrow 0$, since $S= \pm \sqrt{2 m P} x-$ $P t$ has a zero second derivative with respect to x . The function $\Phi(q, t)$ is thus a superposition of plane waves. The free-particle solution is often used as a basis for motivating the quantum Schrödinger Equation and we see here that classical mechanics gives the same result.

In the free particle example, the constant of motion P is identified with the energy of the particle. While a single classical trajectory in N dimensions can be specified with $2 N$ constants, the expression for S depends on only N constants. This is analogous to the number of independent quantum numbers that can be used to describe spatial wavefunctions: ex. E in one dimension, $\left\{E, L_{z}\right\}$ in two dimensions, and $\left\{E, L, L_{z}\right\}$ in three dimensions. Since, for one dimension, the energy can be used as the constant P, weighting with $\mathbb{P}(P)$ can be compared to using a Boltzmann factor to weight an ensemble of classical states based on their energy.

