Wavefunctions and the Hamilton-Jacobi Equation

Sabrina Gonzalez Pasterski

(Dated: September 8, 2013)

I show how the differential equation governing a distribution over classical trajectories is consistent with the quantum Schrödinger Equation in the $\hbar \to 0$ limit.

In classical mechanics, a change of variables from (q_i, p_i) to (Q_i, P_i) produces equivalent equations of motion when:

$$p_i \dot{q}_i - H(q, p, t) = P_i \dot{Q}_i - K(Q, P, t) + \frac{dF}{dt}$$
(1)

for a new Hamiltonian K. Let $F = S(q, P, t) - P_iQ_i$, then:

$$p_i \dot{q}_i - H(q, p, t) = -\dot{P}_i Q_i - K + \frac{\partial S}{\partial t} + \frac{\partial S}{\partial q_i} \dot{q}_i + \frac{\partial S}{\partial P_i} \dot{P}_i.$$
 (2)

Taking (q_i, P_i) as the independent variables means Equation 2 is satisfied for:

$$H = K - \frac{\partial S}{\partial t} \quad p_i = \frac{\partial S}{\partial q_i} \quad Q_i = \frac{\partial S}{\partial P_i}.$$
 (3)

If K = 0, then Q_i and P_i are constants and $H = -\frac{\partial S}{\partial t}$, known as the Hamilton-Jacobi Equation. Here

$$\frac{dS}{dt} = \frac{\partial S}{\partial t} + \frac{\partial S}{\partial q_i} \dot{q}_i = p_i \dot{q}_i - H = L \tag{4}$$

showing that S(q, P, t) can be thought of as an action. The only dynamic variables are q_i and t. P_i and $Q_i = \frac{\partial S}{\partial P_i}$ are the 2N constants needed to specify the trajectory of a classical particle. To solve for the trajectory of a particle using the Hamilton-Jacobi Equation, S(q, P, t) is found and then the constants $Q_i = \frac{\partial S}{\partial P_i}$ provide implicit expressions for $q_i(t)$.

Now consider $e^{i\frac{S}{\hbar}}$, where the constant \hbar makes the phase dimensionless:

$$H \cdot e^{i\frac{S}{\hbar}} = -\frac{\partial S}{\partial t} e^{i\frac{S}{\hbar}} = i\hbar\partial_t e^{i\frac{S}{\hbar}}$$

$$p_j \cdot e^{i\frac{S}{\hbar}} = \frac{\partial S}{\partial q_j} e^{i\frac{S}{\hbar}} = \frac{\hbar}{i}\partial_{q_j} e^{i\frac{S}{\hbar}}.$$
(5)

Acting twice on $e^{i\frac{S}{\hbar}}$ with $\hat{p}_j = \frac{\hbar}{i}\partial_{q_j}$ introduces corrections of order $\mathcal{O}(\hbar)$ to the value of $p_j^2 \cdot e^{i\frac{S}{\hbar}}$:

$$\hat{p}_{j}^{2}e^{i\frac{S}{\hbar}} = \left(\frac{\hbar}{i}\partial_{q_{j}}\right)^{2}e^{i\frac{S}{\hbar}} = \left[\left(\frac{\partial S}{\partial q_{j}}\right)^{2} + \frac{\hbar}{i}\frac{\partial^{2}S}{\partial q_{j}^{2}}\right]e^{i\frac{S}{\hbar}}$$

$$= \left[p_{j}^{2} + \frac{\hbar}{i}\left(\frac{\partial p_{j}}{\partial q_{j}}\right)_{P}\right]e^{i\frac{S}{\hbar}}$$

$$(6)$$

where the partial derivative of the momentum p_j with respect to the coordinate q_j is non-zero since the transformed momenta P_i are kept constant during differentiation, not the original momenta p_i . In the limit:

$$\left|\hbar\frac{\partial^2 S}{\partial q_j^2}\right| \ll \left(\frac{\partial S}{\partial q_j}\right)^2 \tag{7}$$

multiplying $H(q, p, t) \cdot e^{i\frac{S}{\hbar}}$ can be approximated as acting with the operator $\hat{H}(q, \frac{\hbar}{i}\partial_{q_i}, t)e^{i\frac{S}{\hbar}}$. This gives:

$$i\hbar\partial_t e^{i\frac{S}{\hbar}} \simeq \hat{H}(q, \frac{\hbar}{i}\partial_{q_j}, t)e^{i\frac{S}{\hbar}}$$
(8)

which is a linear differential equation that holds for any set of P_i in S(q, P, t). If I define a function:

$$\Phi(q,t) = \int \mathbb{P}(P_i) e^{i \frac{S(q,P,t)}{\hbar}} dP_i$$
(9)

where $\mathbb{P}(P_i)$ is a probability distribution over trajectories that pass through the point (q, t) with different velocities, then $\Phi(q, t)$ also satisfies Equation 8. That equation has the same form as the Schrödinger Equation for the quantum wave function, substituting $\Phi(q, t) \to \Psi(q, t)$.

A function $\Phi(q, t)$ analogous to the quantum wavefunction $\Psi(q, t)$ thus results from taking an array of particles traveling along classical trajectories and weighting the phase $e^{i\frac{S}{\hbar}}$ at each position \vec{q} and time t with a probability distribution for the constants P_i that distinguish trajectories passing through (q, t) with different velocities (see Figure 1).

FIG. 1. Set of classical free particle trajectories through different (x,t) on a surface of constant P with $\dot{x} > 0$.

For the case of the free particle, the limit defined in Equation 7 even holds for $\hbar \rightarrow 0$, since $S = \pm \sqrt{2mPx} - Pt$ has a zero second derivative with respect to x. The function $\Phi(q,t)$ is thus a superposition of plane waves. The free-particle solution is often used as a basis for motivating the quantum Schrödinger Equation and we see here that classical mechanics gives the same result.

In the free particle example, the constant of motion P is identified with the energy of the particle. While a single classical trajectory in N dimensions can be specified with 2N constants, the expression for S depends on only N constants. This is analogous to the number of independent quantum numbers that can be used to describe spatial wavefunctions: ex. E in one dimension, $\{E, L_z\}$ in two dimensions, and $\{E, L, L_z\}$ in three dimensions. Since, for one dimension, the energy can be used as the constant P, weighting with $\mathbb{P}(P)$ can be compared to using a Boltzmann factor to weight an ensemble of classical states based on their energy.