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I show how the differential equation governing a distribution over classical trajectories is consistent
with the quantum Schrédinger Equation in the A — 0 limit.

In classical mechanics,
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Taking (g¢;, P;) as the independent variables means Equa-
tion 2 is satisfied for:
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If K =0, then @Q; and P; are constants and H = 8—8
known as the Hamilton-Jacobi Equation. Here
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showing that S(g, P,t) can be thought of as an action.
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The only dynamic variables are ¢; and . P; and Q; = 50
are the 2N constants needed to specify the trajectory
of a classical particle. To solve for the trajectory of a
particle using the Hamilton-Jacobi Equation, S(q, P, t) is
found and then the constants Q; = g—g provide implicit
expressions for g;(t).

Now consider e’:%, where the constant i makes the
phase dimensionless:
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where the partial derivative of the momentum p; with
respect to the coordinate g; is non-zero since the trans-
formed momenta P; are kept constant during differenti-
ation, not the original momenta p;. In the limit:
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multiplying H(q,p,t)-e* % can be approximated as acting
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with the operator H’(q, %aq] t)e! #. This gives:

zh&t ei h I:I( h

(6)

L (8)

which is a linear differential equation that holds for any
set of P; in S(q, P,t). If I define a function:
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where P(P;) is a probability distribution over trajectories
that pass through the point (g, ¢) with different velocities,
then ®(q,t) also satisfies Equation 8. That equation has
the same form as the Schrédinger Equation for the quan-
tum wave function, substituting ®(q,t) — ¥(q,1).

A function ®(g, t) analogous to the quantum wavefunc-
tion W(q,t) thus results from taking an array of particles
traveling along classical trajectories and weighting the
phase ¢'% at each position ¢ and time ¢ with a prob-
ability distribution for the constants P; that distinguish
trajectories passing through (g, t) with different velocities
(see Figure 1).

FIG. 1. Set of classical free particle trajectories through dif-
ferent (x,t) on a surface of constant P with & > 0.

For the case of the free particle, the limit defined in
Equation 7 even holds for i - 0, since S = £v2mPzx —
Pt has a zero second derivative with respect to x. The
function ®(q,t) is thus a superposition of plane waves.
The free-particle solution is often used as a basis for mo-
tivating the quantum Schrédinger Equation and we see
here that classical mechanics gives the same result.

In the free particle example, the constant of motion P
is identified with the energy of the particle. While a sin-
gle classical trajectory in N dimensions can be specified
with 2N constants, the expression for S depends on only
N constants. This is analogous to the number of inde-
pendent quantum numbers that can be used to describe
spatial wavefunctions: ex. E in one dimension, {E, L.}
in two dimensions, and {E, L, L.} in three dimensions.
Since, for one dimension, the energy can be used as the
constant P, weighting with P(P) can be compared to us-
ing a Boltzmann factor to weight an ensemble of classical
states based on their energy.
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