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I arrive at Maxwell’s Equations, gauge invariance, and the force law for charges, starting from a

conserved current.

Electricity and magnetism can be motivated from two
equations:
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Fµ = 0. (1)

The first, @
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Jµ = 0, states that there exists a conserved
current and is a compact expression for the continuity
equation:

Jµ =

0

B@

⇢c
⇢v

x

⇢v
y

⇢v
z

1

CA ! @⇢

@t
+ ~r · ⇢~v = 0. (2)

The second, v
µ

Fµ = 0, is consistent with the definition of
the four-force, Fµ, as the derivate with respect to proper
time ⌧ (see “Conformal Mapping of Displacement Vec-
tors”) of the energy-momentum four-vector. Plugging in
pµ = mvµ:
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The defining feature of these equations is that they are
valid in any inertial reference frame. While the four-
vectors within these expressions transform during boosts
(as discussed in “Motivating Special Relativity using Lin-
ear Algebra”), the contraction of indices gives a Lorentz
invariant (see “Dot Products in Special Relativity”).

I focus on an approach that employs determinants
rather than Levi-Civita tensor notation and extends the
concept of finding orthogonal vectors described in “An
Alternate Approach for Finding an Orthogonal Basis.”
An important starting point is that the divergence of a
curl is zero. Looking at the expression:
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and noting that the dot product with a constant vector:
~C · (~r ⇥ ~B), is equivalent to replacing the unit vectors
in the first row with ~C, gives a helpful mnemonic for
remembering that the divergence of the cross product is
zero. However, the reason why this is true is not because
~r can be thought of as a vector that is parallel to itself,
but rather because partial derivatives commute and the
determinant produces antisymmetric combinations of the
entries.

Electricity and magnetism arises from finding an ex-
pression for Jµ. The core idea is that Jµ can be expressed
in terms of a single four-potential Aµ. In the following

calculations, Jµ will be constructed from Aµ and other
objects that are independent of the system: @µ and the
Minkowski metric.

The constraint is that @
µ

Jµ = 0 from Equation 1. Be-
cause there are four components, it is not possible to use
an ordinary curl, as in Equation 4. The idea from my
orthogonal vector paper of using a 4⇥4 determinant can
be applied, however. The one extension needed is that
the unit vector for the time direction picks up a negative
sign relative to the spatial unit vectors to be consistent
with the modified inner product. One vector that has
zero divergence is:

Kµ(⌫) =
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for any constant four-vector ⌫µ (so that the derivatives
only hit Aµ). This is not su�cient to define Jµ, however,
because there should not be a special direction ⌫µ. In-
stead, I use Kµ to find another vector that is divergence-
less. Wanting Jµ to be linear in Aµ, I replace the Aµ row
with Kµ:

Hµ(⌫,�) =

��������

�t̂ x̂ ŷ ẑ
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to get a vector that involves products of the components
of ⌫µ and �µ. This suggests a generalization of Equa-
tions 5 and 6. Rather than including two arbitrary vec-
tors, ⌫µ and �µ, I could have their components represent
unit vectors. Products of di↵erent components would
then correspond to inner products of these unit vectors
and the invariance of the Minkowski metric would allow
an expression for Jµ in terms of only derivatives of Aµ.
In place of Equation 5, I get the tensor:
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Substituting the coe�cients of the µ unit vectors in place
of the Aµ row, as in Equation 6, and contracting over the
⌫ index by taking inner products of ⌫ unit vectors that
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are multiplied together gives:
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Where the overall scaling does not a↵ect the divergence-
less property of Jµ.

Defining ~E = �~rA0c � @
t

~A and ~B = ~r ⇥ ~A as the
electric and magnetic fields, with A0 = �/c as the static
electric potential, Equation 8 gives the inhomogeneous
Maxwell equations:
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~E = µ0
~J.

(9)

The divergence-less property of Gµ⌫ gives the homoge-
neous Maxwell Equations:

~r · ~B = 0

~r⇥ ~E + @
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~B = ~0.
(10)

The gauge invariance of the vector potential is evident
from the way in which Jµ was derived using determi-
nants. Determinants are linear in each row in the sense
that if one row includes the vector ~v = ~u1 + ~u2, the to-
tal determinant is equal to the sum of the determinants
found by replacing ~v with ~u1 and then ~v with ~u2. The re-
sult of Equation 7 would be the same for A0µ = Aµ+�µ,
if �µ = @µf for some function f(ct, x), since the deter-
minant with @µf as the last row is zero.

The step that was used to get to Equation 8 from
Equation 7 can also be used to arrive at the force law
for charged particles. Equation 1 says that v

µ

Fµ = 0.
Rather than needing to find a vector whose inner prod-
uct with @µ is zero, the goal now is to get a vector whose
inner product with vµ is zero:
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where the same contraction of ⌫ unit vectors is performed
as was described earlier for finding Jµ. With the charge q
as the proportionality constant, this returns the Lorentz
force law:

~F = q
h
~E + ~v ⇥B

i
. (12)

In summary, I arrived at results from electricity and
magnetism by requiring that: 1) a divergence-less current
be described by second derivatives of a vector potential;
and 2) that the four-force for a charge be proportional to
first derivatives of this potential and orthogonal to the
four-velocity of that charge. In this method, the di↵er-
ence between ~E and ~B appears as a di↵erence between
space and time. While ~B = ~r⇥ ~A takes crossed spatial
derivatives of the spatial components of ~A, I found that
~E combines spatial derivatives of the time-like compo-
nent with the time derivatives of the corresponding spa-
tial components. This highlights a symmetry between
interchanging space and time, rather than ~E and ~B.

APPENDIX

I will now use Einstein summation notation to reach
the same results from a di↵erent route. The above deriva-
tion illustrates a structure to the way in which the fields
and four-potential are defined relative to one another:
each field mixes only two of the four space-time coor-
dinates of the four-potential, so that there are
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�
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field components. This can be imbedded in the way that
the potential is defined if I postulate that currents and
forces can arise from taking derivatives or multiplying
four-velocities by a tensor potential:
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which restricts the set {�, ⌧} to the set {µ, ⌫}. The anti-
symmetry of µ $ ⌫ means there are six possible ways to
form distinct scalars by contracting with combinations of
@µ and vµ:
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� 6= 0.
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Since @
µ

Jµ = 0, the first column in Equation 14 gives
@
⌫

@�Aµ⌫

�

and @
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v�Aµ⌫

�

as possible candidates for Jµ.
The second option is excluded by requiring that the four-
current be independent of the four-velocity of an external
charge carrier.

Since v
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Fµ = 0, the second column in Equation 14
gives v
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as possible candidates for
Fµ. Requiring that the force involve derivatives of the
potential eliminates the second option. In terms of Aµ⌫

�

,
I then have:
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the Faraday Tensor, four-current, and force law.
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